

MT6225 GSM/GPRS Baseband Processor Data Sheet

Revision 1.00

Oct 24, 2006

Revision History

Revision	Date	Comments
1.00	Oct 24, 2006	First Release

TABLE OF CONTENTS

Re	evision History	2
Pro	reface	5
1	System Overview	6
	1.1 Platform Feature	
	1.2 MODEM Features	
	1.3 Multi-Media Features.	
	1.4 General Description	
2	Product Description	
	2.1 Pin Outs	
2	2.2 Top Marking Definition	
2	2.3 DC Characteristics	
	2.4 Pin Description	
2	2.5 Ordering information	29
	Micro-Controller Unit Subsystem	30
	3.1 Processor Core	
	3.2 Memory Management	
	3.3 Bus System	
	3.4 Direct Memory Access	
	3.5 Interrupt Controller	
	3.6 Code Cache controller	
	3.7 MPU	
	3.8 Internal Memory Interface 3.9 External Memory Interface	
4	Microcontroller Peripherals	
	4.1 Security Engine	
	4.2 OTP Controller (OTPC)	
2	4.3 Pulse-Width Modulation Outputs	
4	4.4 Alerter	
2	4.5 SIM Interface	
4	4.6 Keypad Scanner	111
2	4.7 General Purpose Inputs/Outputs	113
4	4.8 General Purpose Timer	
	4.9 UART	
	4.10 IrDA Framer	
	4.11 Real Time Clock	
	4.12 Auxiliary ADC Unit	
	4.13 I2C / SCCB Controller	
	Microcontroller Coprocessors	
	5.1 Divider	
	5.2 CSD Accelerator	
	5.3 FCS Codec	
	Multi-Media Subsystem	
	6.1 LCD Interface	
	6.2 Image Resizer.	
	6.3 NAND FLASH interface	
	6.5 Memory Stick and SD Memory Card Controller	
,	0.5 midnery suck and 5D memory card conduction	

6.6	6 Graphic Memory Controller	
6.7	·	
7 A	Audio Front-End	268
7.1		
7.2		
7.3	<u>e</u>	
8 F	Radio Interface Control	
8.1		
8.2		
8.3		
8.4		
9 E	Baseband Front End	
9.1		
9.1		
9.3		
10 7	Timing Generator	311
	0.1 TDMA timer	
	0.2 Slow Clocking Unit	
	Power, Clocks and Reset	
	1.1 B2PSI	
	1.2 Clocks	
	1.3 Reset Generation Unit (RGU)	
	1.4 Software Power Down Control	
	Analog Front-end & Analog Blocks	
	2.1 General Description	
	2.2 MCU Register Definitions	
12	2.3 Programming Guide	
13 I	Digital Pin Electrical Characteristics	373

Preface

Acronym for Register Type

R/W	Capable of both read and write access
RO	Read only
RC	Read only. After reading the register bank, each bit which is $HIGH(1)$ will be cleared to $LOW(0)$ automatically.
wo	Write only
W1S	Write only. When writing data bits to register bank, each bit which is HIGH(1) will cause the corresponding bit to be set to 1. Data bits which are LOW(0) has no effect on the corresponding bit.
W1C	Write only. When writing data bits to register bank, each bit which is HIGH(1) will cause the corresponding bit to be cleared to 0. Data bits which are LOW(0) has no effect on the corresponding bit.

1. System Overview

The MT6225 is a highly integrated single chip solution for GSM/GPRS phone. Based on 32-bit ARM7EJ-STM RISC processor, MT6225 features not only high performance GPRS Class 12 MODEM but is also designed with support for the wireless multi-media applications, such as advanced display engine, synthesis audio with 64-tone polyphony, digital audio playback, Java acceleration, MMS and etc. Additionally, MT6225 provides varieties of advanced interfaces for functionality extensions, like 3-port external memory interface, 3-port 8/16-bit parallel interface, NAND Flash, IrDA, USB and MMC/SD/MS/MS Pro. The typical application can be shown as **Figure** 1.

Platform

MT6225 is capable of running the ARM7EJ-STM RISC processor at up to 104 MHz, thus providing fast data processing capabilities. In addition to the high clock frequency, a separate CODE cache is also added to further improve the overall system efficiency.

For large amounts of data transfer, high performance DMA (Direct Memory Access) with hardware flow control is implemented, which greatly enhances the data movement speed while reducing MCU processing load.

External Memory Interface

To provide the greatest capacity for expansion and maximum bandwidth for data intensive applications such as multimedia features, MT6225 supports up to 3 external state-of-the-art devices through its 8/16-bit host interface. High performance devices such as Mobile RAM and Cellular RAM are supported for maximum bandwidth. Traditional devices such as burst/page mode flash, page mode SRAM, and Pseudo SRAM are also supported. For greatest compatibility, the memory interface can also be used to connect to legacy devices such as Color/Parallel LCD, and multi-media companion chips are all supported through this interface. To minimize power consumption and ensure low noise, this interface is designed for flexible I/O voltage and allows lowering of the supply voltage down to 1.8V. The driving strength is configurable for signal integrity adjustment. The data bus also employs

retention technology to prevent the bus from floating during a turn over.

Multi-media Subsystem

In order to provide more flexibility and bandwidth for multi-media products, an additional 8/16 bit parallel interface is incorporated. This interface is designed specially for support with Camera companion chip as well as LCD panel. In addition, MT6225 has camera YUV interface that can connect to CMOS sensor of resolution up to VGA. Moreover, it can connect NAND flash device to provide a solution for multi-media data storage. For running multi-media application faster, MT6225 integrates also several hardware-based engines. With hardware based Resizer and advanced display engine, it can display and combine arbitrary size of images with up to 4 blending layers.

User Interface

For user interactions, the MT6225 brings together all necessary peripheral blocks for multi-media GSM/GPRS phone. It comprises the Keypad Scanner with capability of multiple key pressing, SIM Controller, Alerter, Real Time Clock, PWM, Serial LCD Controller and General Purpose Programmable I/Os. For connectivity and data storage, the MT6225 consists of UART, IrDA, USB 1.1 Slave, SDIO and MMC/SD/MS/MS Pro.

Audio Interface

Using a highly integrated mixed-signal Audio Front-End, the MT6225 architecture allows for easy audio interfacing with direct connection to the audio transducers. The audio interface integrates D/A and A/D Converters for Voice band, as well as high resolution Stereo D/A Converters for Audio band. In addition, MT6225 also provides Stereo Input and Analog Mux.

MT6225 supports AMR codec to adaptively optimize speech and audio quality. Moreover, HE-AAC codec is implemented to deliver CD-quality audio at low bit rates.

Overall, MT6225's audio features provide a rich platform for multi-media applications.

Radio Interface

MT6225 integrates a mixed-signal Baseband front-end in order to provide a well-organized radio interface with flexibility for efficient customization. It contains gain and offset calibration mechanisms, and filters with programmable coefficients for comprehensive compatibility control on RF modules. This approach also allows the usage of a high resolution D/A Converter for controlling VCXO or crystal, thus reducing the need for expensive TCVCXO. MT6225 achieves great MODEM performance by utilizing 14-bit high resolution A/D Converter in the RF downlink path. Furthermore, to reduce the need for extra external current-driving component, the driving strength of some BPI outputs is designed to be configurable.

Debug Function

The JTAG interface enables in-circuit debugging of software program with the ARM7EJ-S core. With this standardized debugger interface, the MT6225 provides developers with a wide set of options for choosing ARM development kits from supports of thirty parties. For security reason, JTAG interface can be disabled by programming internal OTP (one-time programmable) fuse.

Power Management

The MT6225 offers various low-power features to help reduce system power consumption. These features include Pause Mode of 32KHz clocking at Standby State, Power Down Mode for individual peripherals, and Processor Sleep Mode. In addition, MT6225 is also fabricated in advanced low leakage CMOS process, hence providing an overall ultra low leakage solution.

Package

The MT6225 device is offered in a 12mm×12mm, 264-ball, 0.65 mm pitch, TFBGA package.

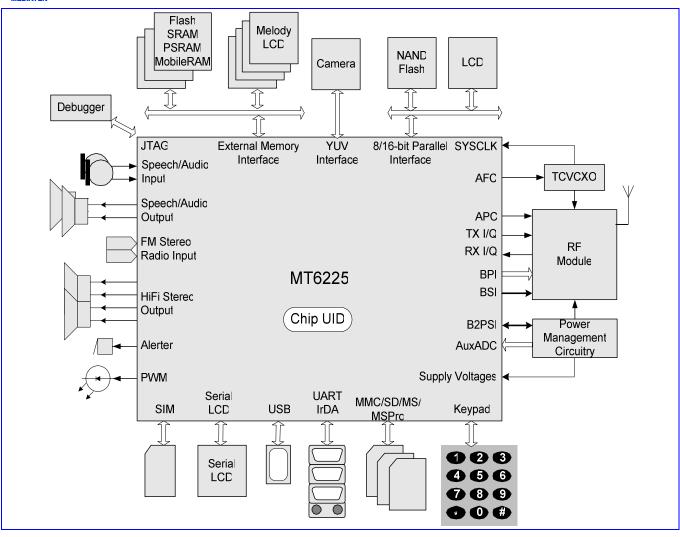


Figure 1 Typical application of MT6225

1.1 Platform Feature

General

- Integrated voice-band, audio-band and base-band analog front ends
- TFBGA 12mm×12mm, 264-ball, 0.65 mm pitch package

MCU Subsystem

- ARM7EJ-S 32-bit RISC processor
- High performance multi-layer AMBA bus
- Java hardware acceleration for fast Java-based games and applets
- ARM7EJ-S Operating frequency: 26/52/104 MHz
- Dedicated DMA bus
- 14 DMA channels
- 48K Bytes on-chip SRAM
- 72K Bytes MCU dedicated Tightly Coupled Memory
- 16K Bytes Code cache
- On-chip boot ROM for Factory Flash Programming
- Watchdog timer for system crash recovery
- 2 sets of General Purpose Timer
- Circuit Switch Data coprocessor
- Division coprocessor

External Memory Interface

- Supports up to 3 external devices
- Supports 8-bit or 16-bit memory components with maximum size of up to 64M Bytes each
- Supports Mobile RAM and Cellular RAM
- Supports Flash and SRAM with Page Mode or Burst Mode
- Supports Pseudo SRAM

- Industry standard Parallel LCD Interface
- Supports multi-media companion chips with 8/16 bits data width
- Flexible I/O voltage of 1.8V ~ 2.8V for memory interface
- Configurable driving strength for memory interface

User Interfaces

- 6-row × 7-column keypad controller with hardware scanner
- Supports multiple key presses for gaming
- SIM/USIM Controller with hardware T=0/T=1 protocol control
- Real Time Clock (RTC) operating with a separate power supply
- General Purpose I/Os (GPIOs)
- 2 Sets of Pulse Width Modulation (PWM) Output
- Alerter Output with Enhanced PWM or PDM
- 4~10 external interrupt lines

Connectivity

- 3 UARTs with hardware flow control and speed up to 921600 bps
- IrDA modulator/demodulator with hardware framer supports SIR mode of operation
- Full-speed USB 1.1 Device controller
- Multi Media Card/Secure Digital Memory Card/Memory Stick/Memory Stick Pro host controller
- Supports SDIO interface for SDIO peripherals as well as WIFI connectivity
- DAI/PCM and I2S interface for Audio application

Security

- Supports security key for code protection
- 143-bit unique/secret chip ID

Power Management

- Power Down Mode for analog and digital circuits
- Processor Sleep Mode
- Pause Mode of 32KHz clocking at Standby State
- 7-channel Auxiliary 10-bit A/D Converter for charger and battery monitoring and photo sensing

Test and Debug

- Built-in digital and analog loop back modes for both Audio and Baseband Front-End
- DAI port complying with GSM Rec.11.10
- JTAG port for debugging embedded MCU

1.2 MODEM Features

Radio Interface and Baseband Front End

- GMSK modulator with analog I and Q channel outputs
- 10-bit D/A Converter for uplink baseband I and Q signals
- 14-bit high resolution A/D Converter for downlink baseband I and Q signals
- Calibration mechanism of offset and gain mismatch for baseband A/D Converter and D/A Converter
- 10-bit D/A Converter for Automatic Power Control
- 13-bit high resolution D/A Converter for Automatic Frequency Control
- Programmable Radio RX filter
- 2 Channels bi-directional Baseband Serial Interface (BSI) with 3-wire or 4-wire control
- 10-Pin Baseband Parallel Interface (BPI) with programmable driving strength
- Multi-band support

Voice and Modem CODEC

- Dial tone generation
- Voice Memo
- Noise Reduction
- Echo Suppression / Echo Cancellation
- Advanced Sidetone Oscillation Reduction
- Digital sidetone generator with programmable gain
- Two programmable acoustic compensation filters
- GSM/GPRS quad vocoders for adaptive multirate (AMR), enhanced full rate (EFR), full rate (FR) and half rate (HR)
- FR error concealment

- GSM channel coding, equalization and A5/1, A5/2 and A5/3 ciphering
- GPRS GEA1, GEA2 and GEA3 ciphering
- Programmable GSM/GPRS Modem
- Packet Switched Data with CS1/CS2/CS3/CS4 coding schemes
- GSM Circuit Switch Data
- GPRS Class 12

Voice Interface and Voice Front End

- Two microphone inputs sharing one low noise amplifier with programmable gain and automatic gain control (AGC) mechanism
- Voice power amplifier with programmable gain
- 2nd order Sigma-Delta A/D Converter for voice uplink path
- D/A Converter for voice downlink path
- Supports half-duplex hands-free operation
- Compliant with GSM 03.50

1.3 Multi-Media Features

LCD/NAND Flash Interface

- 18-bit Parallel Interface supports 8/16 bit NAND flash and 8/9/16/18 bit Parallel LCD
- 8/16 bit NAND Flash Controller with 1-bit ECC correction for mass storages
- 2 Chip selects available for high-density NAND flash device
- Serial LCD Interface with 8/9 bit format support

LCD Controller

- Hardware accelerated display
- Supports simultaneous connection to up to 2 parallel LCD and 1 serial LCD modules
- Supports format: RGB332, RGB444, RGB565, RGB666, RGB888
- Supports LCD panel maximum resolution up to 800x600 at 16bpp
- Supports hardware display rotation
- Capable of combining display memories with up to
 4 blending layers
- Accelerated Gamma correction with programmable gamma table.

Image Signal Processor

- 8 bit YUV format image input
- Capable of processing image of size up to VGA
- Flexible I/O voltage of 1.8V ~ 2.8V

Audio CODEC

- Wavetable synthesis with up to 64 tones
- Advanced stereo wavetable synthesizer
- Wavetable including GM full set of 128 instruments and 47 sets of percussions
- PCM Playback and Record
- Digital Audio Playback

HE-AAC decode support

Audio Interface and Audio Front End

- Supports I2S interface
- High resolution D/A Converters for Stereo Audio playback
- Stereo analog input for stereo audio source
- Analog multiplexer for Stereo Audio
- Stereo to Mono Conversion
- FM radio recording

1.4 General Description

Figure 2 details the block diagram of MT6225. Based on dual-processor architecture, the major processor of MT6225 is ARM7EJ-S, which mainly runs high-level GSM/GPRS protocol software as well as multi-media applications. With the other one is a digital signal processor corresponding for handling the low-level MODEM as well as advanced audio functions. Except for some mixed-signal circuitries, the other building blocks in MT6225 are connected to either the microcontroller or the digital signal processor. Specifically, MT6225 consists of the following subsystems:

- Microcontroller Unit (MCU) Subsystem, including an ARM7EJ-S RISC processor and its accompanying memory management and interrupt handling logics.
- Digital Signal Processor (DSP) Subsystem, including a DSP and its accompanying memory, memory controller, and interrupt controller.
- MCU/DSP Interface, where the MCU and the DSP exchange hardware and software information.
- Microcontroller Peripherals, which include all user interface modules and RF control interface modules.
- Microcontroller Coprocessors, which intend to run computing-intensive processes in place of Microcontroller.
- DSP Peripherals, which are hardware accelerators for GSM/GPRS channel codec.
- Multi-media Subsystem, which integrate several advanced accelerators to support multi-media applications.
- Voice Front End, the data path of conveying analog speech from and to digital speech.
- Audio Front End, also the data path of conveying stereo audio from stereo audio source
- Baseband Front End, the data path of conveying digital signal from and to analog signal of RF modules.
- Timing Generator, generating the control signals related to the TDMA frame timing.
- Power, Reset and Clock subsystem, managing the power, reset and clock distribution inside MT6225.

Details of the individual subsystems and blocks are described in following Chapters.

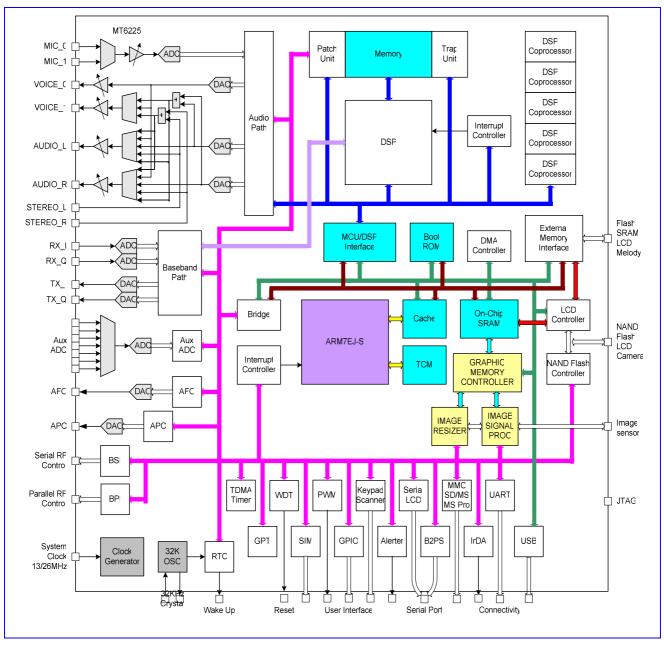


Figure 2 MT6225 block diagram.

2 Product Description

2.1 Pin Outs

One type of package for this product, TFBGA 12mm*12mm, 264-ball, 0.65 mm pitch Package, is offered.

Pin outs and the top view are illustrated in **Figure 3** for this package. Outline and dimension of package is illustrated in **Figure 4**, while the definition of package is shown in **Table 1**.

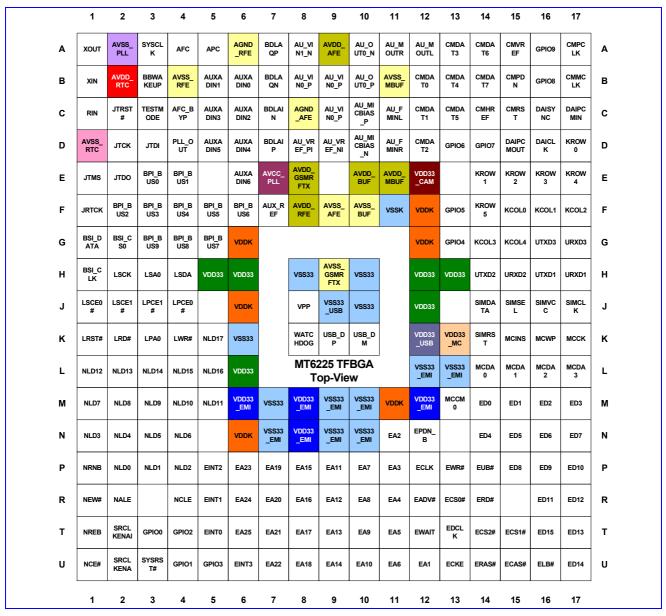
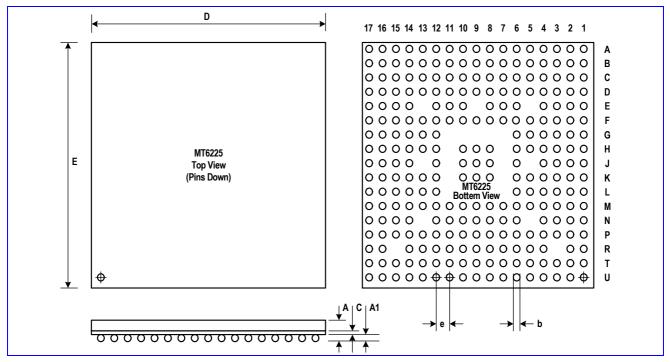
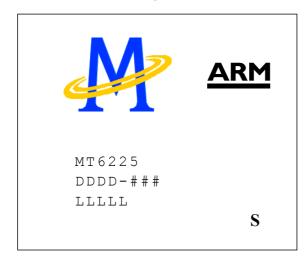


Figure 3 Top View of MT6225 TFBGA 12mm*12mm, 264-ball, 0.65 mm pitch Package




Figure 4 Outlines and Dimension of TFBGA 12mm*12mm, 264-ball, 0.65 mm pitch Package

Body Size		Ball Count	Ball Pitch	Ball Dia.	Package Thk.	Stand Off	Substrate Thk.
D	Е	N	e	b	A (Max.)	A1	С
12	12	264	0.65	0.3	1.2	0.21	0.36

Table 1 Definition of TFBGA 12mm*12mm, 264-ball, 0.65 mm pitch Package (Unit: mm)

2.2 Top Marking Definition

MT6225: Part No. DDDD: Date Code

###: Subcontractor Code

LLLLL: Lot No.

S: Special Code

Figure 5 MT6225A top marking

2.3 DC Characteristics

2.3.1 Absolute Maximum Ratings

Prolonged exposure to absolute maximum ratings may reduce device reliability. Functional operation at these maximum ratings is not implied.

Item	Symbol	Min	Max	Unit
IO power supply	VDD33	-0.3	VDD33+0.3	V
I/O input voltage	VDD33I	-0.3	VDD33+0.3	V
Operating temperature	Topr	-20	80	Celsius
Storage temperature	Tstg	-55	125	Celsius

2.4 Pin Description

Ball								PU	_	**
12X12	Name	Dir	Description	Mode0	Mode1	Mode2	Mode3	/P D	Rese t	10 power
			JTAG Port							
C2	JTRST#	I	JTAG test port reset input					PD	Inpu t	
D2	JTCK	I	JTAG test port clock input					PU	Inpu t	
D3	JTDI	I	JTAG test port data input					PU	Inpu t	VDD33
E1	JTMS	I	JTAG test port mode switch					PU	Inpu t	
E2	JTDO	О	JTAG test port data output					PU	0	
F1	JRTCK	О	JTAG test port returned clock output					PU	0	•
	•		RF Parallel Control Unit		•	-				-
E3	BPI_BUS0	О	RF hard-wire control bus 0						0	_
E4	BPI_BUS1	О	RF hard-wire control bus 1						0	
F2	BPI_BUS2	О	RF hard-wire control bus 2						0	
F3	BPI_BUS3	О	RF hard-wire control bus 3						0	
F4	BPI_BUS4	О	RF hard-wire control bus 4						0	
F5	BPI_BUS5	О	RF hard-wire control bus 5						0	
F6	BPI_BUS6	IO	RF hard-wire control bus 6	GPIO25	BPI_BUS 6	PWM1	13MHz	PD	Inpu t	VDD33
G5	BPI_BUS7	IO	RF hard-wire control bus 7	GPIO26	BPI_BUS 7	PWM2	32KHz	PD	Inpu t	
G4	BPI_BUS8	IO	RF hard-wire control bus 8	GPIO27	BPI_BUS 8	ALERTER	26MHz	PD	Inpu t	
G3	BPI_BUS9	IO	RF hard-wire control bus 9	GPIO28	BPI_BUS 9	BSI_CS1		PD	Inpu t	
			RF Serial Control Unit							
G2	BSI_CS0	О	RF 3-wire interface chip select 0						0	
G1	BSI_DATA	О	RF 3-wire interface data output						0	VDD33
H1	BSI_CLK	О	RF 3-wire interface clock output						0	
	•	-	Serial LCD/PM IC Interface	-	-		-		•	_
H2	LSCK	IO	Serial display interface data output	GPIO29	LSCK	TDMA_C K	DSP_TID	PU	Inpu t	
Н3	LSA0	IO	Serial display interface address output	GPIO30	LSA0	TDMA_D	TDTIRQ	PU	Inpu t	
H4	LSDA	IO	Serial display interface clock output	GPIO31	LSDA	TDMA_D	TCTIRQ2	PU	Inpu t	VDD33
J1	LSCE0#	IO	Serial display interface chip select 0 output	GPIO32	LSCE0#	TDMA_F S	TCTIRQ1	PU	Inpu t	
J2	LSCE1#	IO	Serial display interface chip select 1 output	GPIO33	LSCE1#	LPCE2#	TEVTVA L	PU	Inpu t	
			Parallel LCD/Nand-Flash Interface		•					
Ј3	LPCE1#	Ю	Parallel display interface chip select 1 output	GPIO34	LPCE1#	NCE1#		PU	Inpu t	VDD33
J4	LPCE0#	О	Parallel display interface chip select 0 output						1	
K1	LRST#	О	Parallel display interface Reset Signal						1	

Strobe Strobe Strobe	MEDIA	ITEK									
1.00	K2	LRD#	О							1	
LWR#	К3	LPA0	О	Parallel display interface address						1	
L5	K4	LWR#	О							1	
	K5	NLD17	Ю	Parallel LCD/Nand-Flash Data 17	GPIO35	NLD17	KCOL5	VPP65	PD	1 ^	
N. N. N. N. N. N. N. N.	L5	NLD16	Ю	Parallel LCD/Nand-Flash Data 16	GPIO36	NLD16	KCOL6		PD	1 ^	
NLD13	L4	NLD15	Ю	Parallel LCD/Nand-Flash Data 15					PD	1 ^	
NLD12	L3	NLD14	Ю	Parallel LCD/Nand-Flash Data 14					PD	1 ~	
M5 NLD11 IO Parallel LCD/Nand-Flash Data 11	L2	NLD13	Ю	Parallel LCD/Nand-Flash Data 13					PD	1 ^	
M4	L1	NLD12	IO	Parallel LCD/Nand-Flash Data 12					PD	1 ^	
NLD9	M5	NLD11	IO	Parallel LCD/Nand-Flash Data 11					PD	1 ^	
NLD8	M4	NLD10	IO	Parallel LCD/Nand-Flash Data 10					PD	1 ^	
NLD7	M3	NLD9	IO	Parallel LCD/Nand-Flash Data 9					PD	1 ~	_
NLD6	M2	NLD8	IO	Parallel LCD/Nand-Flash Data 8					PD	1 ^	
Namber Name	M1	NLD7	IO	Parallel LCD/Nand-Flash Data 7					PD	_	
NLD4	N4	NLD6	IO	Parallel LCD/Nand-Flash Data 6					PD	1 ^	_
NLD3	N3	NLD5	IO	Parallel LCD/Nand-Flash Data 5					PD	1 ~	
NLD2	N2	NLD4	IO	Parallel LCD/Nand-Flash Data 4					PD	1 ~	
NLD1	N1	NLD3	IO	Parallel LCD/Nand-Flash Data 3					PD	_	
NLD0	P4	NLD2	IO	Parallel LCD/Nand-Flash Data 2					PD	Inpu t	
NRNB	P3	NLD1	IO	Parallel LCD/Nand-Flash Data 1					PD	_	
R4	P2	NLD0	IO	Parallel LCD/Nand-Flash Data 0					PD	1	
Signal 2	P1	NRNB	IO	Nand-Flash Read/Busy Flag	GPIO37	NRNB	DSP_TID 1		PU	_	
NWE# IO Nand-Flash Write Strobe GPIO40 NWE# DSP_TID PU Inpu t	R4	NCLE	IO		GPIO38	NCLE			PD	1 ^	
NRE# IO Nand-Flash Read Strobe GPIO41 NRE# DSP_TID DSP_TID To DSP_TID DSP_TID To DSP_TI	R2		Ю	_	GPIO39	NALE			PD	1 ^	-
MCE# IO Nand-Flash Chip select output GPIO42 NCE# DSP_TID PU Inpu t	R1	NWE#	Ю	Nand-Flash Write Strobe	GPIO40	NWE#			PU	1 ^	-
SIM Card Interface	T1	NRE#	IO	Nand-Flash Read Strobe	GPIO41	NRE#			PU	1 ~	-
Name	U1	NCE#	IO	Nand-Flash Chip select output	GPIO42	NCE#			PU	1 ^	
Name				SIM Card Interface							
J17 SIMCLK O SIM card clock output 0 0	K14	SIMRST	0						T	0	VDD33
J16 SIMVCC O SIM card supply power control 0			+	1					+	_	
11 7 1			_	-					+	_	
SIMSEL IO SIM card supply power select GPIO46 SIMSEL PD Inpu			+		CDIC	OD (CE)			D.D.	1	
	J15	SIMSEL	10	SIM card supply power select	GPIO46	SIMSEL			PD	Inpu	

J14	CIMDATA	IO	CIM cord data in a t/a to t						t	
J14	SIMDATA	IO	SIM card data input/output				<u> </u>		0	_
			Dedicated GPIO Interface					_		
Т3	GPIO0	IO	General purpose input/output 0	GPIO0			EINT4	PU	Inpu	
U4	CDIO1	IO	General purpose input/output 1	CDIO1			EINT5	PU	Immu	
U4	GPIO1	10	General purpose input/output i	GPIO1			EINIS	PU	Inpu t	
T4	GPIO2	Ю	General purpose input/output 2	GPIO2		UCTS1	EINT6	PU	Inpu	-
									t	
U5	GPIO3	Ю	General purpose input/output 3	GPIO3	BSI_RFIN	URTS1	EINT7	PU	Inpu	
G13	GPIO4	10	Company I many and import/portant A	CDIO4	DAIDCT	IDDA DD	DCD CI	DII	t I	VDD33
GIS	GP104	IO	General purpose input/output 4	GPIO4	DAIRST	IRDA_PD N	DSP_CL K	PU	Inpu t	
F13	GPIO5	Ю	General purpose input/output 5	GPIO5	EDICK	26MHz	AHB_CL	PD	Inpu	-
							K		t	_
D13	GPIO6	IO	General purpose input/output 6	GPIO6	EDIWS	32KHz	ARM_CL	PD	Inpu	
D14	CDIO7	10	Conoral numaca input/autaut 7	CDIO7	EDIDAT		K SLOW C	PD	Immu	-
D14	GPIO7	IO	General purpose input/output 7	GPIO7	EDIDAT		SLOW_C LK	עץ	Inpu t	
B16	GPIO8	Ю	General purpose input/output 8	GPIO8	SCL			PU	Inpu	
									t	VDD33
A16	GPIO9	IO	General purpose input/output 9	GPIO9	SDA			PU	_	_CAM
			76: U						t	
U3	SYSRST#	I	Miscellaneous System reset input active law						Innu	
U3	515K51#	1	System reset input active low						Inpu t	
K8	WATCHDOG	О	Watchdog reset output						1	-
U2	SRCLKENA	О	External TCXO enable output	GPO0	SRCLKE				1	VDD33
			active high		NA					-
T2	SRCLKENAI	IO	External TCXO enable input	GPIO43	SRCLKE NAI			PD	Inpu t	
			Keypad Interface		117.11				-	
G15	KCOL4	I	Keypad column 4					PU	Inpu	
	110021								t	
G14	KCOL3	I	Keypad column 3					PU	Inpu	
F1.7	******							DII	t	
F17	KCOL2	I	Keypad column 2					PU	Inpu t	
F16	KCOL1	I	Keypad column 1					PU	Inpu	-
			31						t	
F15	KCOL0	I	Keypad column 0					PU	Inpu	VDD33
F14	L'DOW5	О	Keypad row 5						0	
E17	KROW5 KROW4	0	Keypad row 4						0	-
E16	KROW3	0	Keypad row 3						0	
E15	KROW3	0	Keypad row 2						0	
E14		0	Keypad row 1						0	
D17	KROW1 KROW0	_							0	
DI/	KROWU	О	Keypad row 0						U	
		-	External Interrupt Interface					Dir	-	
T5	EINT0	I	External interrupt 0					PU	Inpu t	
R5	EINT1	I	External interrupt 1					PU	Inpu	-
								L	t	VDD33
P5	EINT2	I	External interrupt 2					PU	Inpu	כנשם ז
			D					DV-	t	
U6	EINT3	I	External interrupt 3					PU	Inpu t	

M14		TEK								
M15 ED1 IO External memory data bus 1 Impu Imp	M14	ED0	Ю	External memory data bus 0					_	
M16 ED2 IO External memory data bus 2	M15	ED1	Ю	External memory data bus 1					Inpu	
N14 ED4 IO External memory data bus 4	M16	ED2	Ю	External memory data bus 2					Inpu	
N15 EDS 10 External memory data bus 5	M17	ED3	Ю	External memory data bus 3					1 -	
N16 ED6 10 External memory data bus 6	N14	ED4	Ю	External memory data bus 4					_	
N17 ED7 IO External memory data bus 7 Inpu t Inpu t	N15	ED5	Ю	External memory data bus 5					_	
P15 ED8	N16	ED6	Ю	External memory data bus 6					^	
P16 ED9 IO External memory data bus 9 Input to the control of the contr	N17	ED7	Ю	External memory data bus 7					1 ~	
P17		ED8	IO						_	
R16 ED11 IO External memory data bus 11 Inpu t Inpu t			IO	·					1 ~	
R17 ED12 IO External memory data bus 12 Inpu t			Ю						t	
T17									t	
Color Colo									t	
T16									t	
R14 ERD# O External memory read strobe									t	
P13 EWR# O External memory write strobe 1 R13 ECS0# O External memory chip select 0 1 T15 ECS1# O External memory chip select 1 1 T14 ECS2# O External memory chip select 2 1 U16 ELB# O External memory lower byte strobe 1 N12 EVB# O External memory upper byte strobe 1 N12 EPDN# O Power Down Control Signal for PSRAM GPO3 EPDN# 6.5MHz 26MHz 0* R12 EADV# O Address valid for burst mode flash memory 1 1 1 T12 EWAIT I External device wait signal Input Input t P12 ECLK O Clock for flash memory 0 0 U14 ERAS# O Mobile SDRAM row address strobe 1 1 U15 ECAS# O Mobile SDRAM clock enable 0 0 U13									1 -	
R13 ECS0# O External memory chip select 0 1 1 1 1 1 1 1 1 1		ERD#	О	-					1	
T15	P13	EWR#	О	External memory write strobe					1	
T14	R13	ECS0#	О						1	
U16	T15	ECS1#	О	External memory chip select 1					1	
Strobe S	T14	ECS2#	О	External memory chip select 2					1	
Strobe			О	strobe					1	
PSRAM				strobe						
T12				PSRAM	GPO3	EPDN#	6.5MHz	26MHz	0*	
The color of the				flash memory						
U14 ERAS# O Mobile SDRAM row address strobe 1 U15 ECAS# O Mobile SDRAM column address strobe 1 U13 ECKE O Mobile SDRAM clock enable 0 T13 EDCLK O Mobile SDRAM clock 0 U12 EA1 O External memory address bus 1 0 N11 EA2 O External memory address bus 2 0		EWAIT	I						^	
Strobe	P12	ECLK	О	Clock for flash memory					0	
U13 ECKE O Mobile SDRAM clock enable 0 T13 EDCLK O Mobile SDRAM clock 0 U12 EA1 O External memory address bus 1 0 N11 EA2 O External memory address bus 2 0	U14	ERAS#	О	strobe					1	
T13 EDCLK O Mobile SDRAM clock 0 U12 EA1 O External memory address bus 1 0 N11 EA2 O External memory address bus 2 0	U15	ECAS#	О						1	
U12 EA1 O External memory address bus 1 0 N11 EA2 O External memory address bus 2 0	U13	ECKE	О	Mobile SDRAM clock enable					0	
N11 EA2 O External memory address bus 2	T13	EDCLK	О	Mobile SDRAM clock					0	
·	U12	EA1	О	External memory address bus 1					0	
D11 FA2 O External memory address bus 2	N11	EA2	О	External memory address bus 2					0	
111 EAS O External memory address ous 5	P11	EA3	О	External memory address bus 3					0	
R11 EA4 O External memory address bus 4 0	R11	EA4	О	External memory address bus 4					0	

MEDIA	ATEK									
T11	EA5	О	External memory address bus 5						0	_
U11	EA6	О	External memory address bus 6						0	
P10	EA7	О	External memory address bus 7						0	
R10	EA8	О	External memory address bus 8						0	
T10	EA9	О	External memory address bus 9						0	
U10	EA10	О	External memory address bus 10						0	
P9	EA11	О	External memory address bus 11						0	
R9	EA12	О	External memory address bus 12						0	
Т9	EA13	О	External memory address bus 13						0	
U9	EA14	О	External memory address bus 14						0	
P8	EA15	О	External memory address bus 15						0	,
R8	EA16	О	External memory address bus 16						0	
Т8	EA17	О	External memory address bus 17						0	
U8	EA18	О	External memory address bus 18						0	
P7	EA19	О	External memory address bus 19						0	
R7	EA20	О	External memory address bus 20						0	'
T7	EA21	О	External memory address bus 21						0	'
U7	EA22	О	External memory address bus 22						0	'
P6	EA23	О	External memory address bus 23						0	,
R6	EA24	О	External memory address bus 24	GPO1	EA24	26MHz	32KHz		0	
T6	EA25	О	External memory address bus 25	GPO2	EA25	32KHz	26MHz		0	
			USB Interface							
K9	USB DP	Ю	USB D+ Input/Output					Т		VDD33
K10	USB DM	IO	USB D- Input/Output					_		USB
1110	USB_BIVE	10	Memory Card Interface					_		_
M13	МССМ0	Ю	SD Command/MS Bus State							
			Output					<u> </u>		
L14	MCDA0	IO	SD Serial Data IO 0/MS Serial Data IO							
L15	MCDA1	IO	SD Serial Data IO 1					<u> </u>		VDD33
L16	MCDA2	IO	SD Serial Data IO 2							MC
L17	MCDA3	IO	SD Serial Data IO 3							
K17	MCCK	О	SD Serial Clock/MS Serial Clock Output							
K16	MCWP	IO	SD Write Protect Input	GPIO44	MCWP			PU		
K15	MCINS	IO	SD Card Detect Input	GPIO45	MCINS			PU		
	-		UART Interface		-	-	-		-	
H17	URXD1	I	UART 1 receive data					PU	Inpu t	
H16	UTXD1	О	UART 1 transmit data						1	
H15	URXD2	Ю	UART 2 receive data	GPIO35	URXD2	UCTS3	IRDA_R XD	PU	Inpu t	
H14	UTXD2	Ю	UART 2 transmit data	GPIO36	UTXD2	URTS3	IRDA_T XD	PU	Inpu t	VDD33
G17	URXD3	Ю	UART 3 receive data	GPIO33	URXD3	UCTS2		PU	Inpu	,
G16	UTXD3	Ю	UART 3 transmit data	GPIO34	UTXD3	URTS2		PU	Inpu t	
			Digital Audio Interface							-
D16	DAICLK	Ю	DAI clock output	GPIO51	DAICLK			PU	Inpu	VDD33
D15	DAIPCMOUT	Ю	DAI pcm data out	GPIO52	DAIPCM OUT			PD	Inpu t	
i	1	1	1	1	1001	1	1	1	1	. !

	TEK									
C16	DAISYNC	Ю	DAI frame synchronization signal output	GPIO54	DAISYNC			PU	Inpu t	
	-	-	Image Sensor Interface		•	-		_		
C15	CMRST	Ю	Image sensor reset signal output	GPIO10	CMRST			PD	Inpu t	
B15	CMPDN	Ю	Image sensor power down control	GPIO11	CMPDN			PD	Inpu	
A15	CMVREF	Ю	Sensor vertical reference signal input	GPIO12	MIRQ			PU/ PD	Inpu	
C14	CMHREF	Ю	Sensor horizontal reference signal	GPIO13	MFIQ			PU/	Inpu	
A17	CMPCLK	I	Image sensor pixel clock input					PD	Inpu	
B17	CMMCLK	Ю	Image sensor master clock output	GPIO14	CMMCLK	26MHz	6.5MHz		Outp	
B14	CMDAT7	Ю	Image sensor data input 7	GPIO15	CMDAT7	MCDA7			Inpu	. LIDDAA
A14	CMDAT6	Ю	Image sensor data input 6	GPIO16	CMDAT6	MCDA6	DICK		1 ^	VDD33 _CAM
C13	CMDAT5	Ю	Image sensor data input 5	GPIO17	CMDAT5	MCDA5	DID		Inpu t	
B13	CMDAT4	Ю	Image sensor data input 4	GPIO18	CMDAT4	MCDA4	DIMS		Inpu	
A13	CMDAT3	Ю	Image sensor data input 3	GPIO19	CMDAT3	DSP_GPO	TBTXEN		Inpu	
D12	CMDAT2	Ю	Image sensor data input 2	GPIO20	CMDAT2	DSP_GPO	TBTXFS		Inpu	
C12	CMDAT1	Ю	Image sensor data input 1	GPIO21	CMDAT1	DSP_GPO	TBRXEN	PD	Inpu	
B12	CMDAT0	Ю	Image sensor data input 0	GPIO22	CMDAT0	DSP_GPO 0	TBRXFS	PD	Inpu	
			Analog Interface		L				L	-
A12	AU MOUL		Audio analog output left channel							
A11	AU_MOUR		Audio analog output right channel							
C11	AU_FMINL		FM radio analog input left channel							
D11	AU_FMINR		FM radio analog input right channel							
A10	AU_OUT0_N		Earphone 0 amplifier output (-)							
B19	AU_OUT0_P		Earphone 0 amplifier output (+)							
C10	AU_MICBIAS P		Microphone bias supply (+)							
D10	AU_MICBIAS N		Microphone bias supply (-)							
D9	AU_VREF_N		Audio reference voltage (-)							
D8	AU_VREF_P		Audio reference voltage (+)							
В9	AU_VINO_P		Microphone 0 amplifier input (+)							
C9	AU_VIN0_N		Microphone 0 amplifier input (-)							
A8	AU_VIN1_N		Microphone 1 amplifier input (-)							
B8	AU_VIN1_P		Microphone 1 amplifier input (+)							
A7	BDLAQP/BU PAQP		Quadrature input (Q+) baseband codec downlink/uplink							
B7	BDLAQN/BU PAQN		Quadrature input (Q-) baseband codec downlink/uplink							
C7	BDLAIN/BUP AIN		In-phase input (I+) baseband codec downlink/uplink							
D7	BDLAIP/BUP		In-phase input (I-) baseband							

AIP		-						
APC								
		-						
AUXADIN3								
AUXADIN4		1						
AUXADIN5								
AUXADIN6								
AUX_REF		Auxiliary ADC reference voltage input						
AFC		Automatic frequency control DAC output						
AFC_BYP		Automatic frequency control DAC bypass capacitance						
•		VCXO Interface		1	·			
SYSCLK								
		input						AVCC_ PLL
PLL_OUT		PLL test pin						rll
	-	RTC Interface		_	<u> </u>	<u> </u>		
XOUT								
		-						
		· -						
Kii		resistor						AVDD_ RTC
BBWAKEUP	О						1	RIC
	_	1				PD	_	
	_						t	
_		Supply Voltages			-	<u>-</u>		
VDDK		Supply voltage of internal logic						
VDDK								
VDDK		1111						Тур.
								1.8V
		Supply voltage of internal logic						
VDDK								
VDDK		Supply voltage of internal logic						
		Supply voltage of internal logic Supply voltage of internal logic Supply voltage of memory						
VDDK VDDK		Supply voltage of internal logic Supply voltage of internal logic Supply voltage of memory interface driver Supply voltage of memory						Tvn
VDDK VDDK VDD33_EMI		Supply voltage of internal logic Supply voltage of internal logic Supply voltage of memory interface driver						Typ. 1.8~2.8V
VDDK VDDK VDD33_EMI VDD33_EMI		Supply voltage of internal logic Supply voltage of internal logic Supply voltage of memory interface driver Supply voltage of memory interface driver Supply voltage of memory						
VDDK VDDK VDD33_EMI VDD33_EMI VDD33_EMI		Supply voltage of internal logic Supply voltage of internal logic Supply voltage of memory interface driver Supply voltage of memory						
VDDK VDDK VDD33_EMI VDD33_EMI VDD33_EMI VDD33_EMI		Supply voltage of internal logic Supply voltage of internal logic Supply voltage of memory interface driver Ground of memory interface						
VDDK VDDK VDD33_EMI VDD33_EMI VDD33_EMI VDD33_EMI VSS33_EMI		Supply voltage of internal logic Supply voltage of internal logic Supply voltage of memory interface driver Ground of memory interface driver Ground of memory interface Ground of memory interface						
VDDK VDDK VDD33_EMI VDD33_EMI VDD33_EMI VDD33_EMI VSS33_EMI VSS33_EMI		Supply voltage of internal logic Supply voltage of internal logic Supply voltage of memory interface driver Ground of memory interface						
VDDK VDDK VDD33_EMI VDD33_EMI VDD33_EMI VDD33_EMI VSS33_EMI VSS33_EMI VSS33_EMI		Supply voltage of internal logic Supply voltage of internal logic Supply voltage of memory interface driver Ground of memory interface						
VDDK VDDK VDDS3_EMI VDD33_EMI VDD33_EMI VDD33_EMI VSS33_EMI VSS33_EMI VSS33_EMI VSS33_EMI		Supply voltage of internal logic Supply voltage of internal logic Supply voltage of memory interface driver Ground of memory interface						
	APC AUXADIN0 AUXADIN1 AUXADIN3 AUXADIN4 AUXADIN5 AUXADIN6 AUX_REF AFC AFC_BYP SYSCLK PLL_OUT XOUT XIN RIN BBWAKEUP TESTMODE	AIP APC AUXADIN0 AUXADIN1 AUXADIN2 AUXADIN3 AUXADIN4 AUXADIN5 AUXADIN6 AUX_REF AFC AFC_BYP SYSCLK PLL_OUT XOUT XIN RIN BBWAKEUP TESTMODE I VDDK VDDK VDDK	AIP codec downlink/uplink APC Automatic power control DAC output AUXADINO Auxiliary ADC input 0 AUXADIN1 Auxiliary ADC input 1 AUXADIN2 Auxiliary ADC input 2 AUXADIN3 Auxiliary ADC input 3 AUXADIN4 Auxiliary ADC input 4 AUXADIN5 Auxiliary ADC input 5 AUXADIN6 Auxiliary ADC input 6 AUX_REF Auxiliary ADC reference voltage input AFC Automatic frequency control DAC output AFC Automatic frequency control DAC obypass capacitance VCXO Interface SYSCLK 13MHz or 26MHz system clock input PLL_OUT PLL test pin RTC Interface XOUT 32.768 KHz crystal output XIN 32.768 KHz crystal input RIN 32.768 KHz crystal gain control resistor BBWAKEUP O Baseband power on/off control TESTMODE I TESTMODE enable input Supply Voltages VDDK Supply voltage of internal logic VDDK Supply voltage of internal logic VDDK Supply voltage of internal logic	AIP codec downlink/uplink APC Automatic power control DAC output AUXADIN0 Auxiliary ADC input 0 AUXADIN1 Auxiliary ADC input 1 AUXADIN2 Auxiliary ADC input 2 AUXADIN3 Auxiliary ADC input 3 AUXADIN4 Auxiliary ADC input 4 AUXADIN5 Auxiliary ADC input 5 AUXADIN6 Auxiliary ADC input 6 AUX_REF Auxiliary ADC input 6 AUX_REF Auxiliary ADC reference voltage input AFC Automatic frequency control DAC output AFC_BYP Automatic frequency control DAC bypass capacitance VCXO Interface SYSCLK 13MHz or 26MHz system clock input PLL_OUT PLL test pin RTC Interface XOUT 32.768 KHz crystal output XIN 32.768 KHz crystal input RIN 32.768 KHz crystal gain control resistor BBWAKEUP O Baseband power on/off control TESTMODE I TESTMODE enable input Supply Voltages VDDK Supply voltage of internal logic VDDK Supply voltage of internal logic VDDK Supply voltage of internal logic	APC Automatic power control DAC output AUXADIN0 Auxiliary ADC input 0 AUXADIN1 Auxiliary ADC input 1 AUXADIN2 Auxiliary ADC input 2 AUXADIN3 Auxiliary ADC input 3 AUXADIN4 Auxiliary ADC input 4 AUXADIN5 Auxiliary ADC input 5 AUXADIN6 Auxiliary ADC input 6 AUX_REF Auxiliary ADC reference voltage input AFC Automatic frequency control DAC output AFC_BYP Automatic frequency control DAC bypass capacitance VCXO Interface SYSCLK 13MHz or 26MHz system clock input PLL_OUT PLL test pin RTC Interface XOUT 32.768 KHz crystal output XIN 32.768 KHz crystal input RIN 32.768 KHz crystal gain control resistor BBWAKEUP O Baseband power on/off control TESTMODE I TESTMODE enable input Supply Voltages VDDK Supply voltage of internal logic VDDK Supply voltage of internal logic VDDK Supply voltage of internal logic VDDK Supply voltage of internal logic	APC Automatic power control DAC output AUXADIN0 Auxiliary ADC input 0 AUXADIN1 Auxiliary ADC input 1 AUXADIN2 Auxiliary ADC input 2 AUXADIN3 Auxiliary ADC input 3 AUXADIN4 Auxiliary ADC input 4 AUXADIN5 Auxiliary ADC input 5 AUXADIN6 Auxiliary ADC input 6 AUX_REF Auxiliary ADC reference voltage input AFC Automatic frequency control DAC output AFC BYP Automatic frequency control DAC obspass capacitance VCXO Interface SYSCLK 13MHz or 26MHz system clock input PLL_OUT PLL test pin RTC Interface XOUT 32.768 KHz crystal output XIN 32.768 KHz crystal input RIN 32.768 KHz crystal gain control resistor BBWAKEUP O Baseband power on/off control TESTMODE I TESTMODE enable input VDDK Supply voltages VDDK Supply voltage of internal logic VDDK Supply voltage of internal logic VDDK Supply voltage of internal logic VDDK Supply voltage of internal logic	APC automatic power control DAC output AUXADIN0 Auxiliary ADC input 0 AUXADIN1 Auxiliary ADC input 1 AUXADIN2 Auxiliary ADC input 2 AUXADIN3 Auxiliary ADC input 3 AUXADIN4 Auxiliary ADC input 4 AUXADIN5 Auxiliary ADC input 5 AUXADIN6 Auxiliary ADC input 6 AUX_REF Auxiliary ADC reference voltage input AFC Automatic frequency control DAC output AFC_BYP Automatic frequency control DAC bypass capacitance VCXO Interface SYSCLK 13MHz or 26MHz system clock input PLL_OUT PLL test pin RTC Interface XOUT 32.768 KHz crystal output XIN 32.768 KHz crystal input RIN 32.768 KHz crystal gain control resistor BBWAKEUP O Baseband power on/off control TESTMODE 1 TESTMODE enable input VDDK Supply voltages VDDK Supply voltage of internal logic VDDK Supply voltage of internal logic	APC Automatic power control DAC output AUXADIN0 Auxiliary ADC input 0 AUXADIN1 Auxiliary ADC input 1 AUXADIN2 Auxiliary ADC input 2 AUXADIN3 Auxiliary ADC input 3 AUXADIN4 Auxiliary ADC input 4 AUXADIN5 Auxiliary ADC input 5 AUXADIN6 Auxiliary ADC input 6 AUX_REF Auxilia

K12	VDD33_USB	Supply voltage of USB transceiver	Typ. 3.3V
K13	VDD33_MC	Supply voltage of memory card interface drivers	Typ. 2.8V
J9	VSS33_USB/ MC	Ground of USB/memory card interface	
E12	VDD33_CAM	Supply voltage of image sensor interface drivers	Typ. 1.8~2.8 V
H5	VDD33	Supply voltage for pad	
Н6	VDD33	Supply voltage for pad	
L6	VDD33	Supply voltage for pad	Тур.
J12	VDD33	Supply voltage for pad	2.8V
H13	VDD33	Supply voltage for pad	
H12	VDD33	Supply voltage for pad	
H8	VSS33	Ground	
K6	VSS33	Ground	
M7	VSS33	Ground	
J10	VSS33	Ground	
H10	VSS33	Ground	
F11	VSSK	Ground	
J8	VPP	Supply voltage for OTP programming	Typ. 1.8~6.5V
B2	AVDD_RTC	Supply voltage for Real Time Clock	Typ. 1.5V
D1	AVSS_RTC	Ground for Real Time Clock	
		Analog Supplies	
E7	AVCC_PLL	Supply voltage for PLL	Typ. 1.8V
A2	AVSS_PLL	Ground for PLL supply	
E11	AVDD_MBUF	Supply Voltage for Audio band section	Typ. 2.8V
B11	AVSS_MBUF	GND for Audio band section	
E10	AVDD_BUF	Supply voltage for voice band transmit section	Typ. 2.8V
F10	AVSS_BUF	GND for voice band transmit section	
A9	AVDD_AFE	Supply voltage for voice band receive section	Typ. 2.8V
C8	AGND_AFE	GND reference voltage for voice band section	
F9	AVSS_AFE	GND for voice band receive section	
A6	AGND_RFE	GND reference voltage for baseband section, APC, AFC and AUXADC	
Н9	AVSS_GSMR FTX	GND for baseband transmit section	
E8	AVDD_GSMR FTX	Supply voltage for baseband transmit section	Typ. 2.8V
B4	AVSS_RFE	GND for baseband receive section, APC, AFC and AUXADC	
F8	AVDD_RFE	Supply voltage for baseband receive section, APC, AFC and AUXADC	Typ. 2.8V

Table 2 Pin Descriptions (Bolded types are functions at reset)

*Note: The state of EPDN# during the system reset is low, and it changes to high after the system reset is released.

2.5 Ordering information

2.5.1 MT6225A

Part number	Package	Operational temperature range
MT6225A/ACS	12x12x1.2 mm 264-TFBGA	-20~80°C
MT6225A/ACS-L	12x12x1.2 mm 264-TFBGA (Pb free)	-20~80°C

Table 3 MT6225A ordering information

3 Micro-Controller Unit Subsystem

Figure 6 illustrates the block diagram of the Micro-Controller Unit Subsystem in MT6225. The subsystem utilizes a main 32-bit ARM7EJ-S RISC processor, which plays the role of the main bus master controlling the whole subsystem. All processor transactions go to code cache first. The code cache controller accesses TCM (72KB memory dedicated to ARM7EJS core), cache memory, or bus according to the processor's request address. If the requested content is found in TCM or in cache, no bus transaction is required. If the code cache hit rate is high enough, bus traffic can be effectively reduced and processor core performance maximized. In addition to the benefits of reuse of memory contents, code cache also has a MPU (Memory Protection Unit), which allows cacheable and protection settings of predefined regions. The contents of code cache are only accessible to MCU, and only MCU instructions are kept in the cache memory (thus the name "code" cache).

The bus comprises of two-level system buses: Advanced High-Performance Bus (AHB) and Advanced Peripheral Bus (APB). All bus transactions originate from bus masters, while slaves can only respond to requests from bus masters. Before data transfer can be established, the bus master must ask for bus ownership, accomplished by request-grant handshaking protocol between masters and arbiters.

Two levels of bus hierarchy are designed to provide optimum usage for different performance requirements. Specifically, AHB Bus, the main system bus, is tailored toward high-speed requirements and provides 32-bit data path with multiplex scheme for bus interconnections. The APB Bus, on the other hand, is designed to reduce interface complexity for lower data transfer rate, and so it is isolated from high bandwidth AHB Bus by APB Bridge. APB Bus supports 16-bit addressing and both 16-bit and 32-bit data paths. APB Bus is also optimized for minimal power consumption by turning off the clock when there is no APB bus activity.

During operation, if the target slave is located on AHB Bus, the transaction is conducted directly on AHB Bus. However, if the target slave is a peripheral and is attached to the APB bus, then the transaction is conducted between AHB and APB bus through the use of APB Bridge.

The MT6225 MCU subsystem supports only memory addressing method. Therefore all components are mapped onto the MCU 32-bit address space. A Memory Management Unit is employed to allow for a central decode scheme. The MMU generates appropriate selection signals for each memory-addressed module on the AHB Bus.

In order to off-load the processor core, a DMA Controller is designated to act as a master and share the bus resources on AHB Bus to do fast data movement between modules. This controller comprises thirteen DMA channels.

The Interrupt Controller provides a software interface to manipulate interrupt events. It can handle up to 32 interrupt sources asserted at the same time. In general, it generates 2 levels of interrupt requests, FIQ and IRQ, to the processor.

A 128K Byte SRAM is provided for acting as system memory for high-speed data access. For factory programming purpose, a Boot ROM module is used. These two modules use the same Internal Memory Controller to connect to AHB Bus.

External Memory Interface supports both 8-bit and 16-bit devices. Since AHB Bus is 32-bit wide, all the data transfer will be converted into several 8-bit or 16-bit cycles depending on the data width of target device. Note that, this interface is specific to both synchronous and asynchronous components, like Flash, SRAM and parallel LCD. This interface supports also page and burst mode type of Flash.

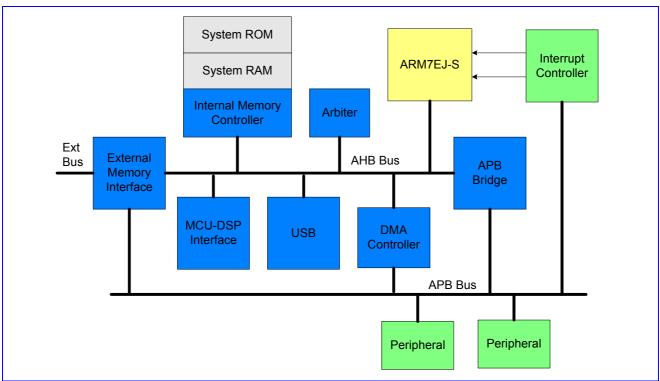


Figure 6 Block Diagram of the Micro-Controller Unit Subsystem in MT6225

3.1 Processor Core

3.1.1 General Description

The Micro-Controller Unit Subsystem in MT6225 is built up with a 32-bit RISC core, ARM7EJ-S that is based on Von Neumann architecture with a single 32-bit data bus carrying both instructions and data. The memory interface of ARM7EJ-S is totally compliant to AMBA based bus system. Basically, it can be connected to AHB Bus directly.

3.2 Memory Management

3.2.1 General Description

The processor core of MT6225, ARM7EJ-S, supports only memory addressing method for instruction fetch and data access. It manages a 32-bit address space that has addressing capability up to 4GB. System RAM, System ROM, Registers, MCU Peripherals and external components are all mapped onto such 32-bit address space, as depicted in **Figure 7**.

MCU 32-bit Addressing Space		Reserved	
AFFF_FFFh A000_0000h		ТСМ	
9FFF_FFFh	9800_0000h	Reserved	
9000_0000h	9000_0000h	LCD	
8FFF_FFFFh 8000_0000h		APB Peripherals	
7FFF_FFFFh '	7800_0000h	Virtual FIFO	
7000_0000h	7000_0000h	USB	
6FFF_FFFFh 5000_0000h		MCU-DSP Interface	
4FFF_FFFFh 4000_0000h	I	nternal Memory	
3FFF_FFFFh 0000_0000h	E	External Memroy	EA[25:0] Addressing Space

Figure 7 The Memory Layout of MT6225

The address space is organized as basis of blocks with size of 256M Bytes for each. Memory blocks MB0-MB9 are determined and currently dedicated to specific functions, as shown in **Table 4**, while the others are reserved for future usage. Essentially, the block number is uniquely selected by address line A31-A28 of internal system bus.

Memory Block	Block Address A31-A28	Address Range	Description
MB0	0h	00000000h-07FFFFFh	Boot Code, EXT SRAM or EXT Flash/MISC
MIDU	Off	08000000h-0FFFFFFh	EXT SRAM or EXT Flash/MISC
MB1	1h	10000000h-17FFFFFh	EXT SRAM or EXT Flash/MISC
MDI	111	18000000h-1FFFFFFh	Reserved
MB2	2h	20000000h-27FFFFFh	Reserved
WID2		28000000h-2FFFFFFh	Reserved
MB3	3h	30000000h-37FFFFFh	Reserved
MD3		38000000h-3FFFFFFh	Reserved
MB4	4h	40000000h-47FFFFFh	System RAM
WD4		48000000h-4FFFFFFh	System ROM
MB5	5h	50000000h-5FFFFFFh	MCU-DSP Interface

MB6	6h	60000000h-6FFFFFFh	
MB7	7h	70000000h-77FFFFFh	USB
WID /	/11	78000000h-7FFFFFFh	Virtual FIFO
MB8	8h	80000000h-8FFFFFFh	APB Slaves
MB9	9h	90000000h-97FFFFFh	LCD
MD9	911	98000000h-9FFFFFFh	Reserved
MB10	Ah	A0000000h-AFFFFFFh	TCM

Table 4 Definitions of Memory Blocks in MT6225

3.2.1.1 External Access

To have external access, the MT6225 outputs 25 bits (A25-A1) of address lines along with 3 selection signals that correspond to associated memory blocks. That is, MT6225 can support at most 3 MCU addressable external components. The data width of internal system bus is fixed as 32-bit wide, while the data width of the external components is fixed as 16 bit.

Since devices are usually available with variety operating grades, adaptive configurations for different applications are needed. MT6225 provides software programmable registers to configure to adapt operating conditions in terms of different wait-states.

3.2.1.2 Memory Re-mapping Mechanism

To permit system being configured with more flexible, a memory re-mapping mechanism is provided. It allows software program to swap BANK0 (ECS0#) and BANK1 (ECS1#) dynamically. Whenever the bit value of RM0 in register EMI_REMAP is changed, these two banks will be swapped accordingly. Besides, it also permits system being boot in different sequence as detailed in 3.2.1.3 Boot Sequence.

3.2.1.3 Boot Sequence

Since the ARM7EJ-S core always starts to fetch instructions from the lowest memory address at 000000000 after system has been reset, the system is designed to have a dynamic mapping architecture capable of associating Boot Code, external Flash or external SRAM with the memory block 0000_0000h - 07ff_ffffh.

By default, the Boot Code is mapped onto $0000_0000h - 07ff_fffffh$ after a system reset. In this special boot mode, External Memory Controller does not access external memory; instead, the EMI Controller send predefined Boot Code back to the ARM7EJS-S core, which instructs the processor to execute the program in System ROM. This configuration can be changed by programming bit value of RM1 in register EMI REMAP directly.

MT6225 system provides one boot up scheme:

• Start up system of running codes from Boot Code for factory programming or NAND flash boot.

3.2.1.3.1 Boot Code

The Boot Code is placed together with Memory Re-Mapping Mechanism in External Memory Controller, and comprises of just two words of instructions as shown below. A jump instruction leads the processor to run the code starting at address 48000000h where the System ROM is placed.

ADDRESS	BINARY CODE	ASSE	MBLY	
00000000h	E51FF004h	LDR	PC,	0x4
00000004h	48000000h	(DAT	lA)	

3.2.1.3.2 Factory Programming

The configuration for factory programming is shown in **Figure 8**. Usually the Factory Programming Host connects with MT6225 by way of UART interface. To have it works properly, the system should boot up from Boot Code. That is the IBOOT should be tied to GND. The down load speed can be up to 921K bps while MCU is running at 26MHz.

After system being reset, the Boot Code will guide the processor to run the Factory Programming software placed in System ROM. Then, MT6225 will start and continue to poll the UART1 port until valid information is detected. The first information received on the UART1 will be used to configure the chip for factory programming. The Flash down loader program is then transferred into System RAM or external SRAM.

Further information will be detailed in MT6225 Software Programming Specification.

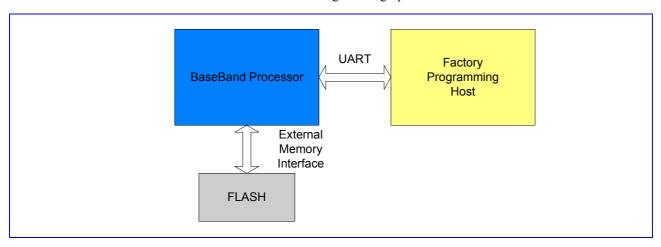


Figure 8 System configuration required for factory programming

3.2.1.3.3 NAND Flash Booting

If MT6225 cannot receive data from UART1 for a certain amount of time, the program in System ROM checks if any valid boot loader exists in NAND flash. If found, the boot loader code is copied from NAND flash to RAM (internal or external) and executed to start the real application software. If no valid boot loader can be found in NAND flash, MT6225 starts executing code in EMI bank0 memory. The whole boot sequence is shown in the following figure.

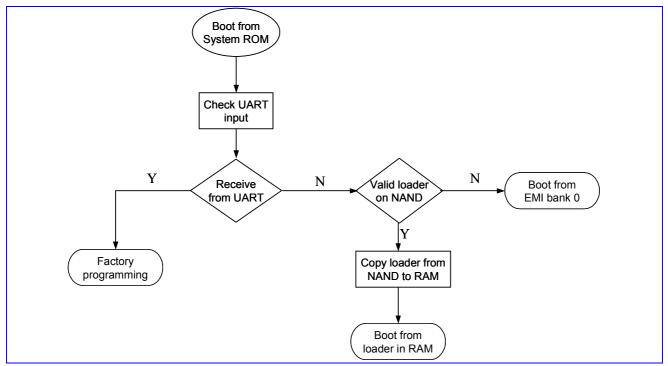


Figure 9 Boot sequence

3.2.1.4 Little Endian Mode

The MT6225 system always treats 32-bit words of memory in Little Endian format. In Little Endian mode, the lowest numbered byte in a word is stored in the least significant byte, and the highest numbered byte in the most significant position. Byte 0 of the memory system is therefore connected to data lines 7 through 0.

3.3 Bus System

3.3.1 General Description

Two levels of bus hierarchy are employed in constructing the Micro-Controller Unit Subsystem of MT6225. As depicted in **Figure 6**, AHB Bus and APB Bus serve for system backbone and peripheral buses, while an APB bridge connects these two buses. Both AHB and APB Buses operate at the same clock rate as processor core.

The APB Bridge is the only bus master resided on the APB bus. All APB slaves are mapped onto memory block MB8 in MCU 32-bit addressing space. A central address decoder is implemented inside the bridge to generate those select signals for individual peripheral. In addition, since the base address of each APB slave has been associated with select signals, the address bus on APB will contains only the value of offset address.

The maximum address space that can be allocated to a single APB slave is 64KB, i.e. 16-bit address lines. The width of data bus is mainly constrained to 16-bit to minimize the design complexity and power consumption while some of them uses 32-bit data bus to accommodate more bandwidth. In the case where an APB slave needs large amount of transfers, the device driver can also request a DMA resource or channel to conduct a burst of data transfer. The base address and data width of each peripheral are listed in **Table 5**.

Base Address	Description	Data Width	Software Base ID
8000_0000h	Configuration Registers (Clock, Power Down, Version and Reset)	16	CONFG Base
8001_0000h	External Memory Interface	32	EMI Base

8002_0000h	Interrupt Controller	32	CIRQ Base
8003_0000h	DMA Controller	32	DMA Base
8004_0000h	Reset Generation Unit	16	RGU Base
8005_0000h	Reserved		
8006_0000h	GPRS Cipher Unit	32	GCU Base
8007_0000h	I2C	16	I2C Base
8008_0000h	Reserved		
8009_0000h	NAND Flash Interface	32	NFI base
8010_0000h	General Purpose Timer	16	GPT Base
8011_0000h	Keypad Scanner	16	KP Base
8012_0000h	General Purpose Inputs/Outputs	16	GPIO Base
8013_0000h	UART 1	16	UART1 Base
8014_0000h	SIM Interface	16	SIM Base
8015_0000h	Pulse-Width Modulation Outputs	16	PWM Base
8016_0000h	Alerter Interface	16	ALTER Base
8017_0000h	Security Engine for JTAG protection	32	SEJ Base
8018_0000h	UART 2	16	UART2 Base
8019_0000h	Reserved		
801a_0000h	IrDA	16	IRDA Base
801b_0000h	UART 3	16	UART3 Base
801c_0000h	Base-Band to PMIC Serial Interface	16	B2PSI Base
8020_0000h	TDMA Timer	32	TDMA Base
8021_0000h	Real Time Clock	16	RTC Base
8022_0000h	Base-Band Serial Interface	32	BSI Base
8023_0000h	Base-Band Parallel Interface	16	BPI Base
8024_0000h	Automatic Frequency Control Unit	16	AFC Base
8025_0000h	Automatic Power Control Unit	32	APC Base
8026_0000h	Frame Check Sequence	16	FCS Base
8027_0000h	Auxiliary ADC Unit	16	AUXADC Base
8028_0000h	Divider/Modulus Coprocessor	32	DIVIDER Base
8029_0000h	CSD Format Conversion Coprocessor	32	CSD_ACC Base
802a_0000h	MS/SD Controller	32	MSDC Base
8030_0000h	MCU-DSP Shared Register	16	SHARE Base
8031_0000h	DSP Patch Unit	16	PATCH Base
8032_0000h	IRDBG	16	IRDBG Base
8040_0000h	Audio Front End	16	AFE Base
8041_0000h	Base-Band Front End	16	BFE Base
8043_0000h	DigitalRF interface	32	DIGRF Base
8050_0000h	Analog Chip Interface Controller	16	MIXED Base
8060_0000h	Reserved		
8061_0000h	Resizer	32	RESZ Base
8062_0000h	Camera	32	CAM Base

 Table 5 Register Base Addresses for MCU Peripherals

REGISTER ADDRESS	REGISTER NAME	SYNONYM
CONFG + 0000h	Hardware Version Register	HW_VER
CONFG + 0004h	Software Version Register	SW_VER
CONFG + 0008h	Hardware Code Register	HW_CODE
CONFG + 0404h	APB Bus Control Register	APB_CON

Table 6 APB Bridge Register Map

3.3.2 Register Definitions

CONFG+0000

h

Hardware Version Register

HW_VERSION

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	me EXTP			MAJREV				MINREV								
Type	e RO		RO				R	0			R	0				
Reset	et 8		A			0 0)							

This register is used by software to determine the hardware version of the chip. The register contains a new value whenever each metal fix or major step is performed. All values are incremented by a step of 1.

MINREV Minor Revision of the chip
MAJREV Major Revision of the chip

EXTP This field shows the existence of Hardware Code Register that presents the Hardware ID while the value is other than zero.

CONFG+0004

h

Software Version Register

SW_VERSION

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	ne EXTP		MAJREV			MINREV										
Type	e RO		RO				RO				R	0				
Reset	et 8		A				()			()				

This register is used by software to determine the software version used with this chip. All values are incremented by a step of 1.

MINREV Minor Revision of the software
MAJREV Major Revision of the software

EXTP This field shows the existence of Hardware Code Register that presents the Hardware ID when the value is other than zero.

CONFG+0008

h

Hardware Code Register

HW_CODE

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	CODE3		CODE2			CODE1			CODE0							
Type	RO		RO			RO					R	0				
Reset	6		2			2				5						

This register presents the Hardware ID.

CODE This version of chip is coded as 6225h.

h

CONFG+0404

APB Bus Control Register

APB_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		APB W6		APB W4	APB W3	APB W2	APB W1	APB W0		APBR 6		APBR 4	APBR 3	APBR 2	APBR 1	APBR 0
Type		R/W		R/W	R/W	R/W	R/W	R/W		R/W		R/W	R/W	R/W	R/W	R/W
Reset		0		0	0	0	0	0		1		1	1	1	1	1

This register is used to control the timing of Read Cycle and Write Cycle on APB Bus. Note that APB Bridge 5 is different from other bridges. The access time is varied, and access is not completed until acknowledge signal from APB slave is asserted.

APBR0-APBR6 Read Access Time on APB Bus

- 0 1-Cycle Access
- 1 2-Cycle Access

APBW0-APBW6 Write Access Time on APB Bus

- 0 1-Cycle Access
- 1 2-Cycle Access

3.4 Direct Memory Access

3.4.1 General Description

A generic DMA Controller is placed on Layer 2 AHB Bus to support fast data transfers and to off-load the processor. With this controller, specific devices on AHB or APB buses can benefit greatly from quick completion of data movement from or to memory modules such as Internal System RAM or External SRAM. Such Generic DMA Controller can also be used to connect any two devices other than memory module as long as they can be addressed in memory space.

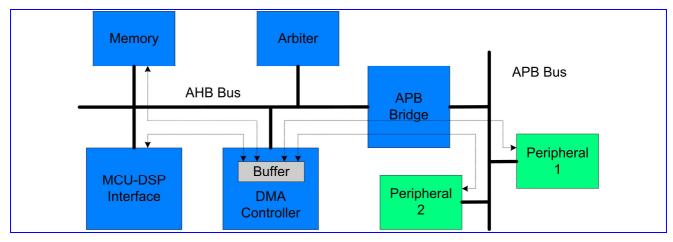


Figure 10 Variety Data Paths of DMA Transfers

Up to fourteen channels of simultaneous data transfers are supported. Each channel has a similar set of registers to be configured to different scheme as desired. If more than fourteen devices are requesting the DMA resources at the same time, software based arbitration should be employed. Once the service candidate is decided, the responsible device driver should configure the Generic DMA Controller properly in order to conduct DMA transfers. Both Interrupt and Polling based schemes in handling the completion event are supported. The block diagram of such generic DMA Controller is illustrated in **Figure 11**.

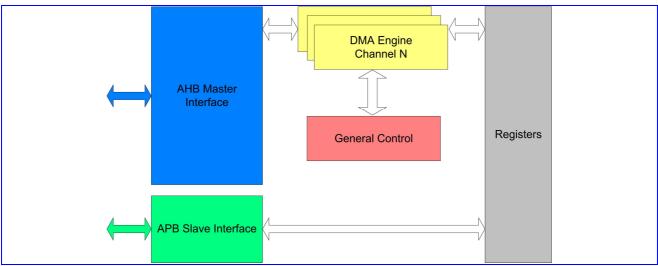


Figure 12 Block Diagram of Direct memory Access Module

3.4.1.1 Full-Size & Half-Size DMA Channels

There are three types of DMA channels in the DMA controller. The first one is called a full-size DMA channel, the second one is called a half-size DMA channel, and the last is Virtual FIFO DMA. Channels 1 through 3 are full-size DMA channels; channels 4 through 10 are half-size ones; and channels 11 through 14 are Virtual FIFO DMAs. The difference between the first two types of DMA channels is that both source and destination address are programmable in full-size DMA channels, but only the address of one side can be programmed in half-size DMA channel. In half-size channels, only either the source or destination address can be programmed, while the addresses of the other side is preset. Which preset address is used depends on the setting of MAS in DMA Channel Control Register. Refer to the Register Definition section for more detail.

3.4.1.2 Ring Buffer & Double Buffer Memory Data Movement

DMA channels 1 through 10 support ring-buffer and double-buffer memory data movement. This can be achieved by programming DMA_WPPT and DMA_WPTO, as well as setting WPEN in DMA_CON register to enable. **Figure 13** illustrates how this function works. Once the transfer counter reaches the value of WPPT, the next address jumps to the WPTO address after completing the WPPT data transfer. Note that only one side can be configured as ring-buffer or double-buffer memory, and this is controlled by WPSD in DMA_CON register.

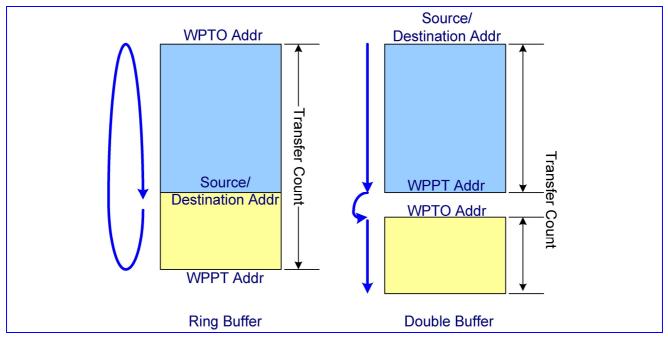


Figure 14 Ring Buffer and Double Buffer Memory Data Movement

3.4.1.3 Unaligned Word Access

The address of word access on AHB bus must be aligned to word boundary, or the 2 LSB is truncated to 00b. If programmers do not notice this, it may cause an incorrect data fetch. In the case where data is to be moved from unaligned addresses to aligned addresses, the word is usually first split into four bytes and then moved byte by byte. This results in four read and four write transfers on the bus.

To improve bus efficiency, unaligned-word access is provided in DMA4~10. While this function is enabled, DMAs move data from unaligned address to aligned address by executing four continuous byte-read access and one word-write access, reducing the number of transfers on the bus by three.

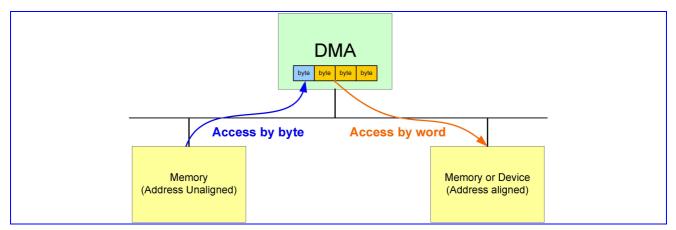


Figure 15 Unaligned Word Accesses

3.4.1.4 Virtual FIFO DMA

Virtual FIFO DMA is used to ease UART control. The difference between the Virtual FIFO DMAs and the ordinary DMAs is that Virtual FIFO DMA contains additional FIFO controller. The read and write pointers are kept in the Virtual FIFO DMA. During a read from the FIFO, the read pointer points to the address of the next data. During a write to the FIFO, the write pointer moves to the next address. If the FIFO is empty, a FIFO read is not allowed. Similarly, data is not written into the FIFO if the FIFO is full. Due to UART flow control requirements, an alert

length is programmed. Once the FIFO Space is less than this value, an alert signal is issued to enable UART flow control. The type of flow control performed depends on the setting in UART.

Each Virtual FIFO DMA can be programmed as RX or TX FIFO. This depends on the setting of DIR in DMA_CON register. If DIR is "0"(READ), it means TX FIFO. On the other hand, if DIR is "1"(WRITE), the Virtual FIFO DMA is specified as a RX FIFO.

Virtual FIFO DMA provides an interrupt to MCU. This interrupt informs MCU that there is data in the FIFO, and the amount of data is over or under the value defined in DMA_COUNT register. With this, MCU does not need to poll DMA to know when data must be removed from or put into the FIFO.

Note that Virtual FIFO DMAs cannot be used as generic DMAs, i.e. DMA1~10.

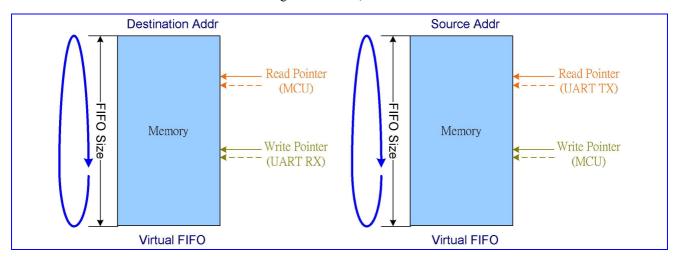


Figure 16 Virtual FIFO DMA

DMA number	Address of Virtual FIFO Access Port	Associated UART
DMA11	7800_0000h	UART1 RX / ALL UART TX
DMA12	7800_0100h	UART2 RX / ALL UART TX
DMA13	7800_0200h	UART3 RX / ALL UART TX
DMA14	7800_0300h	ALL UART TX

Table 7 Virtual FIFO Access Port

DMA number	Туре	Ring Buffer	Two Buffer	Burst Mode	Unaligned Word Access
DMA1	Full Size	•	•	•	
DMA2	Full Size	•	•	•	
DMA3	Full Size	•	•	•	
DMA4	Half Size	•	•	•	•
DMA5	Half Size	•	•	•	•
DMA6	Half Size	•	•	•	•
DMA7	Half Size	•	•	•	•
DMA8	Half Size	•	•	•	•
DMA9	Half Size	•	•	•	•
DMA10	Half Size	•	•	•	•
DMA11	Virtual FIFO	•			
DMA12	Virtual FIFO	•			

DMA13	Virtual FIFO	•		
DMA14	Virtual FIFO	•		

Table 8 Function List of DMA channels

REGISTER ADDRESS	REGISTER NAME	SYNONYM
DMA + 0000h	DMA Global Status Register	DMA_GLBSTA
DMA + 0028h	DMA Global Bandwidth Limiter Register	DMA_GLBLIMITER
DMA + 0100h	DMA Channel 1 Source Address Register	DMA1_SRC
DMA + 0104h	DMA Channel 1 Destination Address Register	DMA1_DST
DMA + 0108h	DMA Channel 1 Wrap Point Address Register	DMA1_WPPT
DMA + 010Ch	DMA Channel 1 Wrap To Address Register	DMA1_WPTO
DMA + 0110h	DMA Channel 1 Transfer Count Register	DMA1_COUNT
DMA + 0114h	DMA Channel 1 Control Register	DMA1_CON
DMA + 0118h	DMA Channel 1 Start Register	DMA1_START
DMA + 011Ch	DMA Channel 1 Interrupt Status Register	DMA1_INTSTA
DMA + 0120h	DMA Channel 1 Interrupt Acknowledge Register	DMA1_ACKINT
DMA + 0124h	DMA Channel 1 Remaining Length of Current Transfer	DMA1_RLCT
DMA + 0128h	DMA Channel 1 Bandwidth Limiter Register	DMA1_LIMITER
DMA + 0200h	DMA Channel 2 Source Address Register	DMA2_SRC
DMA + 0204h	DMA Channel 2 Destination Address Register	DMA2_DST
DMA + 0208h	DMA Channel 2 Wrap Point Address Register	DMA2_WPPT
DMA + 020Ch	DMA Channel 2 Wrap To Address Register	DMA2_WPTO
DMA + 0210h	DMA Channel 2 Transfer Count Register	DMA2_COUNT
DMA + 0214h	DMA Channel 2 Control Register	DMA2_CON
DMA + 0218h	DMA Channel 2 Start Register	DMA2_START
DMA + 021Ch	DMA Channel 2 Interrupt Status Register	DMA2_INTSTA
DMA + 0220h	DMA Channel 2 Interrupt Acknowledge Register	DMA2_ACKINT
DMA + 0224h	DMA Channel 2 Remaining Length of Current Transfer	DMA2_RLCT
DMA + 0228h	DMA Channel 2 Bandwidth Limiter Register	DMA2_LIMITER
DMA + 0300h	DMA Channel 3 Source Address Register	DMA3_SRC
DMA + 0304h	DMA Channel 3 Destination Address Register	DMA3_DST
DMA + 0308h	DMA Channel 3 Wrap Point Address Register	DMA3_WPPT
DMA + 030Ch	DMA Channel 3 Wrap To Address Register	DMA3_WPTO
DMA + 0310h	DMA Channel 3 Transfer Count Register	DMA3_COUNT
DMA + 0314h	DMA Channel 3 Control Register	DMA3_CON
DMA + 0318h	DMA Channel 3 Start Register	DMA3_START
DMA + 031Ch	DMA Channel 3 Interrupt Status Register	DMA3_INTSTA
DMA + 0320h	DMA Channel 3 Interrupt Acknowledge Register	DMA3_ACKINT
DMA + 0324h	DMA Channel 3 Remaining Length of Current Transfer	DMA3_RLCT
DMA + 0328h	DMA Channel 3 Bandwidth Limiter Register	DMA3_LIMITER
DMA + 0408h	DMA Channel 4 Wrap Point Address Register	DMA4_WPPT
DMA + 040Ch	DMA Channel 4 Wrap To Address Register	DMA4_WPTO
DMA + 0410h	DMA Channel 4 Transfer Count Register	DMA4_COUNT

DMA + 0414h	DMA Channel 4 Control Register	DMA4_CON
DMA + 0418h	DMA Channel 4 Start Register	DMA4_START
DMA + 041Ch	DMA Channel 4 Interrupt Status Register	DMA4_INTSTA
DMA + 0420h	DMA Channel 4 Interrupt Acknowledge Register	DMA4_ACKINT
DMA + 0424h	DMA Channel 4 Remaining Length of Current Transfer	DMA4_RLCT
DMA + 0428h	DMA Channel 4 Bandwidth Limiter Register	DMA4_LIMITER
DMA + 042Ch	DMA Channel 4 Programmable Address Register	DMA4_PGMADDR
DMA + 0508h	DMA Channel 5 Wrap Point Address Register	DMA5_WPPT
DMA + 050Ch	DMA Channel 5 Wrap To Address Register	DMA5_WPTO
DMA + 0510h	DMA Channel 5 Transfer Count Register	DMA5_COUNT
DMA + 0514h	DMA Channel 5 Control Register	DMA5_CON
DMA + 0518h	DMA Channel 5 Start Register	DMA5_START
DMA + 051Ch	DMA Channel 5 Interrupt Status Register	DMA5_INTSTA
DMA + 0520h	DMA Channel 5 Interrupt Acknowledge Register	DMA5_ACKINT
DMA + 0524h	DMA Channel 5 Remaining Length of Current Transfer	DMA5_RLCT
DMA + 0528h	DMA Channel 5 Bandwidth Limiter Register	DMA5_LIMITER
DMA + 052Ch	DMA Channel 5 Programmable Address Register	DMA5_PGMADDR
DMA + 0608h	DMA Channel 6 Wrap Point Address Register	DMA6_WPPT
DMA + 060Ch	DMA Channel 6 Wrap To Address Register	DMA6_WPTO
DMA + 0610h	DMA Channel 6 Transfer Count Register	DMA6_COUNT
DMA + 0614h	DMA Channel 6 Control Register	DMA6_CON
DMA + 0618h	DMA Channel 6 Start Register	DMA6_START
DMA + 061Ch	DMA Channel 6 Interrupt Status Register	DMA6_INTSTA
DMA + 0620h	DMA Channel 6 Interrupt Acknowledge Register	DMA6_ACKINT
DMA + 0624h	DMA Channel 6 Remaining Length of Current Transfer	DMA6_RLCT
DMA + 0628h	DMA Channel 6 Bandwidth Limiter Register	DMA6_LIMITER
DMA + 062Ch	DMA Channel 6 Programmable Address Register	DMA6_PGMADDR
DMA + 0708h	DMA Channel 7 Wrap Point Address Register	DMA7_WPPT
DMA + 070Ch	DMA Channel 7 Wrap To Address Register	DMA7_WPTO
DMA + 0710h	DMA Channel 7 Transfer Count Register	DMA7_COUNT
DMA + 0714h	DMA Channel 7 Control Register	DMA7_CON
DMA + 0718h	DMA Channel 7 Start Register	DMA7_START
 DMA + 071Ch	DMA Channel 7 Interrupt Status Register	DMA7_INTSTA
 DMA + 0720h	DMA Channel 7 Interrupt Acknowledge Register	DMA7_ACKINT
DMA + 0724h	DMA Channel 7 Remaining Length of Current Transfer	DMA7_RLCT
DMA + 0728h	DMA Channel 7 Bandwidth Limiter Register	DMA7_LIMITER
 DMA + 072Ch	DMA Channel 7 Programmable Address Register	DMA7_PGMADDR
DMA + 0808h	DMA Channel 8 Wrap Point Address Register	DMA8_WPPT
 DMA + 080Ch	DMA Channel 8 Wrap To Address Register	DMA8_WPTO
 DMA + 0810h	DMA Channel 8 Transfer Count Register	DMA8_COUNT
DMA + 0814h	DMA Channel 8 Control Register	DMA8_CON
DMA + 0818h	DMA Channel 8 Start Register	DMA8_START
 DMA + 081Ch	DMA Channel 8 Interrupt Status Register	DMA8_INTSTA
 		-

DMA + 0820h	DMA Channel 8 Interrupt Acknowledge Register	DMA8_ACKINT
DMA + 0824h	DMA Channel 8 Remaining Length of Current Transfer	DMA8_RLCT
DMA + 0828h	DMA Channel 8 Bandwidth Limiter Register	DMA8_LIMITER
DMA + 082Ch	DMA Channel 8 Programmable Address Register	DMA8_PGMADDR
DMA + 0908h	DMA Channel 9 Wrap Point Address Register	DMA9_WPPT
DMA + 090Ch	DMA Channel 9 Wrap To Address Register	DMA9_WPTO
DMA + 0910h	DMA Channel 9 Transfer Count Register	DMA9_COUNT
DMA + 0914h	DMA Channel 9 Control Register	DMA9_CON
DMA + 0918h	DMA Channel 9 Start Register	DMA9_START
DMA + 091Ch	DMA Channel 9 Interrupt Status Register	DMA9_INTSTA
DMA + 0920h	DMA Channel 9 Interrupt Acknowledge Register	DMA9_ACKINT
DMA + 0924h	DMA Channel 9 Remaining Length of Current Transfer	DMA9_RLCT
DMA + 0928h	DMA Channel 9 Bandwidth Limiter Register	DMA9_LIMITER
DMA + 092Ch	DMA Channel 9 Programmable Address Register	DMA9_PGMADDR
DMA + 0A08h	DMA Channel 10 Wrap Point Address Register	DMA10_WPPT
DMA + 0A0Ch	DMA Channel 10 Wrap To Address Register	DMA10_WPTO
DMA + 0A10h	DMA Channel 10 Transfer Count Register	DMA10_COUNT
DMA + 0A14h	DMA Channel 10 Control Register	DMA10_CON
DMA + 0A18h	DMA Channel 10 Start Register	DMA10_START
DMA + 0A1Ch	DMA Channel 10 Interrupt Status Register	DMA10_INTSTA
DMA + 0A20h	DMA Channel 10 Interrupt Acknowledge Register	DMA10_ACKINT
DMA + 0A24h	DMA Channel 10 Remaining Length of Current Transfer	DMA10_RLCT
DMA + 0A28h	DMA Channel 10 Bandwidth Limiter Register	DMA10_LIMITER
DMA + 0A2Ch	DMA Channel 10 Programmable Address Register	DMA10_PGMADDR
DMA + 0B10h	DMA Channel 11 Transfer Count Register	DMA11_COUNT
DMA + 0B14h	DMA Channel 11 Control Register	DMA11_CON
DMA + 0B18h	DMA Channel 11 Start Register	DMA11_START
DMA + 0B1Ch	DMA Channel 11 Interrupt Status Register	DMA11_INTSTA
DMA + 0B20h	DMA Channel 11 Interrupt Acknowledge Register	DMA11_ACKINT
DMA + 0B28h	DMA Channel 11 Bandwidth Limiter Register	DMA11_LIMITER
DMA + 0B2Ch	DMA Channel 11 Programmable Address Register	DMA11_PGMADDR
DMA + 0B30h	DMA Channel 11 Write Pointer	DMA11_WRPTR
DMA + 0B34h	DMA Channel 11 Read Pointer	DMA11_RDPTR
DMA + 0B38h	DMA Channel 11 FIFO Count	DMA11_FFCNT
DMA + 0B3Ch	DMA Channel 11 FIFO Status	DMA11_FFSTA
DMA + 0B40h	DMA Channel 11 Alert Length	DMA11_ALTLEN
DMA + 0B44h	DMA Channel 11 FIFO Size	DMA11_FFSIZE
DMA + 0C10h	DMA Channel 12 Transfer Count Register	DMA12_COUNT
DMA + 0C14h	DMA Channel 12 Control Register	DMA12_CON
DMA + 0C18h	DMA Channel 12 Start Register	DMA12_START
DMA + 0C1Ch	DMA Channel 12 Interrupt Status Register	DMA12_INTSTA
DMA + 0C20h	DMA Channel 12 Interrupt Acknowledge Register	DMA12_ACKINT

DMA + 0C28h	DMA Channel 12 Bandwidth Limiter Register	DMA12_LIMITER
DMA + 0C2Ch	DMA Channel 12 Programmable Address Register	DMA12_PGMADDR
DMA + 0C30h	DMA Channel 12 Write Pointer	DMA12_WRPTR
DMA + 0C34h	DMA Channel 12 Read Pointer	DMA12_RDPTR
DMA + 0C38h	DMA Channel 12 FIFO Count	DMA12_FFCNT
DMA + 0C3Ch	DMA Channel 12 FIFO Status	DMA12_FFSTA
DMA + 0C40h	DMA Channel 12 Alert Length	DMA12_ALTLEN
DMA + 0C44h	DMA Channel 12 FIFO Size	DMA12_FFSIZE
DMA + 0D10h	DMA Channel 13 Transfer Count Register	DMA13_COUNT
DMA + 0D14h	DMA Channel 13 Control Register	DMA13_CON
DMA + 0D18h	DMA Channel 13 Start Register	DMA13_START
DMA + 0D1Ch	DMA Channel 13 Interrupt Status Register	DMA13_INTSTA
DMA + 0D20h	DMA Channel 13 Interrupt Acknowledge Register	DMA13_ACKINT
DMA + 0D28h	DMA Channel 13 Bandwidth Limiter Register	DMA13_LIMITER
DMA + 0D2Ch	DMA Channel 13 Programmable Address Register	DMA13_PGMADDR
DMA + 0D30h	DMA Channel 13 Write Pointer	DMA13_WRPTR
DMA + 0D34h	DMA Channel 13 Read Pointer	DMA13_RDPTR
DMA + 0D38h	DMA Channel 13 FIFO Count	DMA13_FFCNT
DMA + 0D3Ch	DMA Channel 13 FIFO Status	DMA13_FFSTA
DMA + 0D40h	DMA Channel 13 Alert Length	DMA13_ALTLEN
DMA + 0D44h	DMA Channel 13 FIFO Size	DMA13_FFSIZE
DMA + 0E10h	DMA Channel 14 Transfer Count Register	DMA14_COUNT
DMA + 0E14h	DMA Channel 14 Control Register	DMA14_CON
DMA + 0E18h	DMA Channel 14 Start Register	DMA14_START
DMA + 0E1Ch	DMA Channel 14 Interrupt Status Register	DMA14_INTSTA
DMA + 0E20h	DMA Channel 14 Interrupt Acknowledge Register	DMA14_ACKINT
DMA + 0E28h	DMA Channel 14 Bandwidth Limiter Register	DMA14_LIMITER
DMA + 0E2Ch	DMA Channel 14 Programmable Address Register	DMA14_PGMADDR
DMA + 0E30h	DMA Channel 14 Write Pointer	DMA14_WRPTR
DMA + 0E34h	DMA Channel 14 Read Pointer	DMA14_RDPTR
DMA + 0E38h	DMA Channel 14 FIFO Count	DMA14_FFCNT
DMA + 0E3Ch	DMA Channel 14 FIFO Status	DMA14_FFSTA
DMA + 0E40h	DMA Channel 14 Alert Length	DMA14_ALTLEN
DMA + 0E44h	DMA Channel 14 FIFO Size	DMA14_FFSIZE

Table 9 DMA Controller Register Map

3.4.2 Register Definitions

Register programming tips:

- Start registers shall be cleared, when associated channels are being programmed.
- PGMADDR, i.e. programmable address, only exists in half-size DMA channels. If DIR in Control Register is high, PGMADDR represents Destination Address. Conversely, If DIR in Control Register is low, PGMADDR represents Source Address.

Functions of ring-buffer and double-buffer memory data movement can be activated on either source side or
destination side by programming DMA_WPPT & and DMA_WPTO, as well as setting WPEN in DMA_CON
register high.
 WPSD in DMA_CON register determines the activated side.

DMA+0000h DMA Global Status Register

DMA_GLBSTA

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name					IT14	RUN1 4	IT13	RUN1 3	IT12	RUN1 2	IT11	RUN1 1	IT10	RUN1 0	IT9	RUN9
Type					RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset					0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	IT8	RUN8	IT7	RUN7	IT6	RUN6	IT5	RUN5	IT4	RUN4	IT3	RUN3	IT2	RUN2	IT1	RUN1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register helps software program keep track of the global status of DMA channels.

RUN_N DMA channel n status

- **0** Channel n is stopped or has completed the transfer already.
- 1 Channel n is currently running.

Interrupt status for channel n

- No interrupt is generated.
- 1 An interrupt is pending and waiting for service.

DMA+0028h DMA Global Bandwidth limiter Register

DMA_GLBLIMIT

ER

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
Name																			
Type																			
Reset																			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
Name												GLBLI	MITER						
Type									WO										
Reset									0										

Please refer to the expression in DMAn_LIMITER for detailed note. The value of DMA_GLBLIMITER is set to all DMA channels, from 1 to 14.

DMA+0n00h DMA Channel n Source Address Register

DMAn_SRC

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								SRC[3	31:16]							
Type								R/	W							
Reset								()							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								SRC	15:0]							
Type								R/	W							
Reset								()							

The above registers contain the base or current source address that the DMA channel is currently operating on. Writing to this register specifies the base address of transfer source for a DMA channel. Before programming these registers, the software program should make sure that STR in DMAn_START is set to 0; that is, the DMA channel is stopped and disabled completely. Otherwise, the DMA channel may run out of order. Reading this register returns the address value from which the DMA is reading.

Note that n is from 1 to 3.

SRC [31:0] specifies the base or current address of transfer source for a DMA channel, i.e. channel 1, 2 or 3.

WRITE Base address of transfer source
READ Address from which DMA is reading

DMA+0n04h DMA Channel n Destination Address Register

DMAn DST

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								DST[3	31:16]							
Type								R/	W							
Reset								()							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								DST[15:0]							
Type								R/	W							
Reset			•		•	•		()	•		•	•			-

The above registers contain the base or current destination address that the DMA channel is currently operating on..

Writing to this register specifies the base address of the transfer destination for a DMA channel. Before programming these registers, the software should make sure that STR in DMAn_START is set to '0'; that is, the DMA channel is stopped and disabled completely. Otherwise, the DMA channel may run out of order. Reading this register returns the address value to which the DMA is writing.

Note that n is from 1 to 3.

DST [31:0] specifies the base or current address of transfer destination for a DMA channel, i.e. channel 1, 2 or 3.

WRITE Base address of transfer destination.

READ Address to which DMA is writing.

DMA+0n08h DMA Channel n Wrap Point Count Register

DMAn_WPPT

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		-	-				-	-		-	-	_	_	_	-	
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								WPPT	[15:0]							
Type								R/	W							
Reset								()							

The above registers are to specify the transfer count required to perform before the jump point. This can be used to support ring buffer or double buffer style memory accesses. To enable this function, two control bits, WPEN and WPSD, in DMA control register must be programmed. See the following register description for more details. If the transfercounter in the DMA engine matches this value, an address jump occurs, and the next address is the address specified in DMAn_WPTO. Before programming these registers, the software should make sure that STR in DMAn_START is set to '0', that is the DMA channel is stopped and disabled completely. Otherwise, the DMA channel may run out of order. To enable this function, WPEN in DMA CON is set.

Note that n is from 1 to 10.

WPPT WPPT[15:0] specifies the amount of the transfer count from start to jumping point for a DMA channel, i.e. channel 1-10.

WRITE Address of the jump point.

READ Value set by the programmer.

DMA+0n0Ch DMA Channel n Wrap To Address Register

DMAn_WPTO

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								WPTO	[31:16]							
Type								R/	W							
Reset								()							_

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		WPTO[15:0]														
Type								R/	W							
Reset			•	•			•	()	•		•		•	•	

The above registers specify the address of the jump destination of a given DMA transfer to support ring buffer or double buffer style memory accesses. To enable this function, set the two control bits, WPEN and WPSD, in the DMA control register. See the following register description for more details. Before programming these registers, the software should make sure that STR in DMAn_START is set to '0', that is the DMA channel is stopped and disabled completely. Otherwise, the DMA channel may run out of order. To enable this function, WPEN in DMA CON should be set.

Note that n is from 1 to 10.

WPTO WPTO[31:0] specifies the address of the jump point for a DMA channel, i.e. channel 1-10.

WRITE Address of the jump destination.

READ Value set by the programmer.

DMA+0n10h DMA Channel n Transfer Count Register

DMAn_COUNT

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								LE	N							
Type								R/	W							
Reset								()							

This register specifies the amount of total transfer count that the DMA channel is required to perform. Upon completion, the DMA channel generates an interrupt request to the processor while ITEN in DMAn_CON is set as '1'. Note that the total size of data being transferred by a DMA channel is determined by LEN together with the SIZE in DMAn_CON, i.e. LEN x SIZE.

For virtual FIFO DMA, this register is used to configure the RX threshold and TX threshold. Interrupt is triggered while FIFO count >= RX threshold in RX path or FIFO count =< TX threshold in TX path. Note that ITEN bit in DMA CON register shall be set, or no interrupt is issued.

Note that n is from 1 to 14.

LEN The amount of total transfer count

DMA+0n14h DMA Channel n Control Register

DMAn_CON

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name										MAS				DIR	WPEN	WPS D
Туре										R/W				R/W	R/W	R/W
Reset										0				0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	ITEN						BURST				B2W	DRQ	DINC	SINC	SIZ	ZE
Туре	R/W						R/W				R/W	R/W	R/W	R/W	R/	W
Reset	0						0				0	0	0	0	C)

This register contains all the available control schemes for a DMA channel that is ready for software programmer to configure. Note that all these fields cannot be changed while DMA transfer is in progress or an unexpected situation may occur.

Note that n is from 1 to 14.

SIZE Data size within the confine of a bus cycle per transfer.

These bits confines the data transfer size between source and destination to the specified value for individual bus cycle. The size is in terms of byte and has maximum value of 4 bytes. It is mainly decided by the data width of a DMA master.

- **00** Byte transfer/1 byte
- 01 Half-word transfer/2 bytes
- 10 Word transfer/4 bytes
- 11 Reserved

SINC Incremental source address. Source addresses increase every transfer. If the setting of SIZE is Byte, Source addresses increase by 1 every single transfer. If Half-Word, increase by 2; and if Word, increase by 4.

- O Disable
- 1 Enable

DINC Incremental destination address. Destination addresses increase every transfer. If the setting of SIZE is Byte, Destination addresses increase by 1 every single transfer. If Half-Word, increase by 2; and Iif Word, increase by 4.

- O Disable
- 1 Enable

DREQ Throttle and handshake control for DMA transfer

- O No throttle control during DMA transfer or transfers occurred only between memories
- 1 Hardware handshake management

The DMA master is able to throttle down the transfer rate by way of request-grant handshake.

B2W Word to Byte or Byte to Word transfer for the applications of transferring non-word-aligned-address data to word-aligned-address data. Note that BURST is set to 4-beat burst while enabling this function, and the SIZE is set to Byte.

NO effect on channel 1-3 & 11-14.

- 0 Disable
- 1 Enable

BURST Transfer Type. Burst-type transfers have better bus efficiency. Mass data movement is recommended to use this kind of transfer. However, note that burst-type transfer does not stop until all of the beats in a burst are completed or transfer length is reached. FIFO threshold of peripherals must be configured carefully while being used to move data from/to the peripherals.

What transfer type can be used is restricted by the SIZE. If SIZE is 00b, i.e. byte transfer, all of the four transfer types can be used. If SIZE is 01b, i.e. half-word transfer, 16-beat incrementing burst cannot be used. If SIZE is 10b, i.e. word transfer, only single and 4-beat incrementing burst can be used.

NO effect on channel 11 - 14.

- 000 Single
- 001 Reserved
- **010** 4-beat incrementing burst
- **011** Reserved
- 100 8-beat incrementing burst
- 101 Reserved
- **110** 16-beat incrementing burst
- **111** Reserved

ITEN DMA transfer completion interrupt enable.

- 0 Disable
- 1 Enable

WPSD The side using address-wrapping function. Only one side of a DMA channel can activate address-wrapping function at a time.

NO effect on channel 11 - 14.

- Address-wrapping on source .
- 1 Address-wrapping on destination.

WPEN Address-wrapping for ring buffer. The next address of DMA jumps to WRAP TO address when the current address matches WRAP POINT count.

NO effect on channel 11 - 14.

- 0 Disable
- 1 Enable

DIR Directions of DMA transfer for half-size and Virtual FIFO DMA channels, i.e. channels 4~14. The direction is from the perspective of the DMA masters. WRITE means read from master and then write to the address specified in DMA PGMADDR, and vice versa.

NO effect on channel 1 - 3.

- 0 Read
- 1 Write

MAS Master selection. Specifies which master occupies this DMA channel. Once assigned to certain master, the corresponding DREQ and DACK are connected. For half-size and Virtual FIFO DMA channels, i.e. channels $4 \sim 14$, a predefined address is assigned as well.

00000 SIM **00001** MSDC **00010** IrDA TX **00011** IrDA RX **00100** USB1 Write **00101** USB1 Read **00110** USB2 Write **00111** USB2 Read **01000** UART1 TX **01001** UART1 RX **01010** UART2 TX **01011** UART2 RX **01100** UART3 TX **01101** UART3 RX **01110** DSP-DMA **01111** NFI TX **10000** NFI RX 10001 I2C TX **10010** I2C RX

OTHERS

DMA+0n18h DMA Channel n Start Register

Reserved

DMAn_START

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	STR															
Type	R/W															
Reset	0															

This register controls the activity of a DMA channel. Note that prior to setting STR to "1", all the configurations should be done by giving proper value to the registers. Note also that once the STR is set to "1", the hardware does not clear it automatically no matter if the DMA channel accomplishes the DMA transfer or not. In other works, the

value of **STR** stays "1" regardless of the completion of DMA transfer. Therefore, the software program should be sure to clear **STR** to "0" before restarting another DMA transfer.

Note that n is from 1 to 14.

STR Start control for a DMA channel.

- The DMA channel is stopped.
- 1 The DMA channel is started and running.

DMA+0n1Ch DMA Channel n Interrupt Status Register

DMAn INTSTA

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	INT															
Type	RO															
Reset	0															

This register shows the interrupt status of a DMA channel. It has the same value as DMA_GLBSTA.

Note that n is from 1 to 14.

INT Interrupt Status for DMA Channel

- **0** No interrupt request is generated.
- 1 One interrupt request is pending and waiting for service.

DMA+0n20h DMA Channel n Interrupt Acknowledge Register

DMAn_ACKINT

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	ACK															
Type	WO															
Reset	0															

This register is used to acknowledge the current interrupt request associated with the completion event of a DMA channel by software program. Note that this is a write-only register, and any read to it returns a value of "0".

Note that n is from 1 to 14.

ACK Interrupt acknowledge for the DMA channel

- O No effect
- 1 Interrupt request is acknowledged and should be relinquished.

DMA+0n24h

DMA Channel n Remaining Length of Current Transfer

DMAn_RLCT

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								RL	СТ							
Type								R	0							
Reset								C)							

This register is to reflect the left amount of the transfer.

Note that n is from 1 to 10.

DMA+0n28h DMA Bandwidth limiter Register

DMAn_LIMITER

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												LIMI	TER			
Type												R/	W			
Reset												()			

This register is to suppress the Bus utilization of the DMA channel. The value is from 0 to 255. 0 means no limitation, and 255 means totally banned. The value between 0 and 255 means certain DMA can have permission to use AHB every (4 X n) AHB clock cycles.

Note that it is not recommended to limit the Bus utilization of the DMA channels because this increases the latency of response to the masters, and the transfer rate decreases as well. Before using it, programmer must make sure that the bus masters have some protective mechanism to avoid entering the wrong states.

Note that n is from 1 to 14.

LIMITER from 0 to 255. 0 means no limitation, 255 means totally banned, and others mean Bus access permission every (4 X n) AHB clock.

DMA+0n2Ch DMA Channel n Programmable Address Register

DMAn_PGMAD DR

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							PC	MADD	R[31:1	6]						
Type								R/	W							
Reset								()							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							P	GMADI	DR[15:	0]						
Type								R/	W							
Reset								()							

The above registers specify the address for a half-size DMA channel. This address represents a source address if DIR in DMA_CON is set to 0, and represents a destination address if DIR in DMA_CON is set to 1. Before being able to program these register, the software should make sure that STR in DMAn_START is set to '0', that is the DMA channel is stopped and disabled completely. Otherwise, the DMA channel may run out of order.

Note that n is from 4 to 14.

PGMADDR PGMADDR[31:0] specifies the addresses for a half-size or a Virtual FIFO DMA channel, i.e. channel 4 – 14.

WRITE Address of the jump destination.

READ Current address of the transfer.

DMA+0n30h DMA Channel n Virtual FIFO Write Pointer Register DMAn WRPTR

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							1	VRPTR	[31:16]							
Type								R	0							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							,	WRPT	R[15:0]							
Type								R	0							

Note that n is from 11 to 14.

WRPTR Virtual FIFO Write Pointer.

DMA+0n34h DMA Channel n Virtual FIFO Read Pointer Register DMAn_RDPTR

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								RDPTR	[31:16]							
Type								R	0							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								RDPT	R[15:0]							
Type								R	0							

Note that n is from 11 to 14.

RDPTR Virtual FIFO Read Pointer.

DMA+0n38h DMA Channel n Virtual FIFO Data Count Register DMAn_FFCNT

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								FFC	CNT							
Type								R	0							

Note that n is from 11 to 14.

FFCNT To display the number of data stored in FIFO. 0 means FIFO empty, and FIFO is full if FFCNT is equal to FFSIZE.

DMA+0n3Ch DMA Channel n Virtual FIFO Status Register DMAn_FFSTA

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														ALT	EMPT Y	FULL
Type														RO	RO	RO
Reset														0	1	0

Note that n is from 11 to 14.

FULL To indicate FIFO is full.

- 0 Not Full
- 1 Full

EMPTY To indicate FIFO is empty.

- 0 Not Empty
- 1 Empty

ALT To indicate FIFO Count is larger than ALTLEN. DMA issues an alert signal to UART to enable UART flow control.

- 0 Not reach alert region.
- 1 Reach alert region.

DMA+0n40h DMA Channel n Virtual FIFO Alert Length Register DMAn_ALTLEN

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name													ALT	LEN		
Type													R/	W		

Reset					0

Note that n is from 11 to 14.

ALTLEN Specifies the Alert Length of Virtual FIFO DMA. Once the remaining FIFO space is less than ALTLEN, an alert signal is issued to UART to enable flow control. Normally, ALTLEN shall be larger than 16 for UART application.

DMA+0n44h DM	MA Channel n V	/irtual FIFO Siz	e Register	DMAn FFSIZE
--------------	----------------	------------------	------------	-------------

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								FFS	IZE							
Туре								R/	W							
Reset		•	•	•		•		()		•	•			•	

Note that n is from 11 to 14.

FFSIZE Specifies the FIFO Size of Virtual FIFO DMA.

3.5 Interrupt Controller

3.5.1 General Description

Figure 17 outlines the major functionality of the MCU Interrupt Controller. The interrupt controller processes all interrupt sources coming from external lines and internal MCU peripherals. Since ARM7EJ-S core supports two levels of interrupt latency, this controller generates two request signals: FIQ for fast, low latency interrupt request and IRQ for more general interrupts with lower priority.

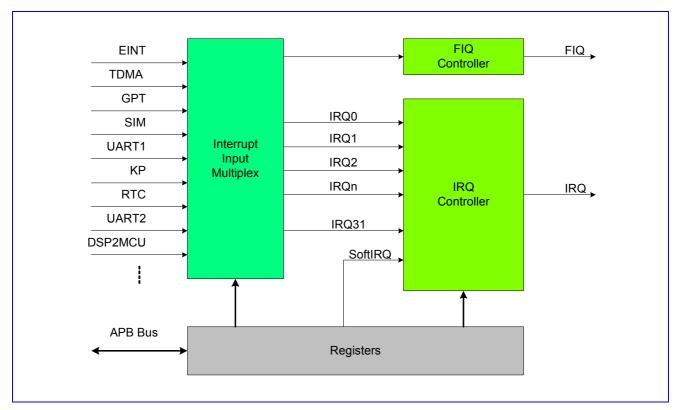


Figure 18 Block Diagram of the Interrupt Controller

One and only one of the interrupt sources can be assigned to FIQ Controller and have the highest priority in requesting timing critical service. All the others share the same IRQ signal by connecting them to IRQ Controller. The IRQ Controller manages up 32 interrupt lines of IRQ0 to IRQ31 with fixed priority in descending order.

The Interrupt Controller provides a simple software interface by mean of registers to manipulate the interrupt request shared system. IRQ Selection Registers and FIQ Selection Register determine the source priority and connecting relation among sources and interrupt lines. IRQ Source Status Register allows software program to identify the source of interrupt that generates the interrupt request. IRQ Mask Register provides software to mask out undesired sources some time. End of Interrupt Register permits software program to indicate to the controller that a certain interrupt service routine has been finished.

Binary coded version of IRQ Source Status Register is also made available for software program to helpfully identify the interrupt source. Note that while taking advantage of this, it should also take the binary coded version of End of Interrupt Register coincidently.

One and only one of the interrupt sources can be assigned to FIQ Controller and have the highest priority in requesting timing critical service. All the others should share the same IRQ signal by connecting them to IRQ Controller. The IRQ Controller manages up 32 interrupt lines of IRQ0 to IRQ31 with fixed priority in descending order.

The Interrupt Controller provides a simple software interface by mean of registers to manipulate the interrupt request shared system. IRQ Selection Registers and FIQ Selection Register determine the source priority and connecting relation among sources and interrupt lines. IRQ Source Status Register allows software program to identify the source of interrupt that generates the interrupt request. IRQ Mask Register provides software to mask out undesired sources some time. End of Interrupt Register permits software program to indicate the controller that a certain interrupt service routine has been finished.

Binary coded version of IRQ Source Status Register is also made available for software program to helpfully identify the interrupt source. Note that while using this register, the controller also needs to use the corresponding binary coded version of End of Interrupt Register for response.

The essential Interrupt Table of ARM7EJ-S core is shown as Table 10.

Address	Description
00000000h	System Reset
00000018h	IRQ
0000001Ch	FIQ

Table 11 Interrupt Table of ARM7EJ-S

3.5.1.1 Interrupt Source Masking

Interrupt controller provides the function of Interrupt Source Masking by the way of programming MASK register. Any of them can be masked individually.

However, because of the bus latency, the masking takes effect no earlier than 3 clock cycles later. In this time, the to-be-masked interrupts could come in and generate an IRQ pulse to MCU, and then disappear immediately. This IRQ forces MCU going to Interrupt Service Routine and polling Status Register (IRQ_STA or IRQ_STA2), but the register shows there is no interrupt. This might cause MCU malfunction.

There are two ways for programmer to protect their software.

- 1. Return from ISR (Interrupt Service Routine) immediately while the Status register shows no interrupt.
- 2. Set I bit of MCU before doing Interrupt Masking, and then clear it after Interrupt Masking done.

Both avoid the problem, but the first item recommended to have in the ISR.

Interrupt controller provides the function of Interrupt Source Masking by the way of programming MASK register. Any of them can be masked individually.

However, because of the bus latency, the masking takes effect a minimal of 3 clock cycles later. In this time, the to-be-masked interrupts could come in and generate an IRQ pulse to MCU, and then disappear immediately. This IRQ forces MCU to go into Interrupt Service Routine and poll the Status Register (IRQ_STA or IRQ_STA2), but the register will show there is no interrupt. This may cause MCU malfunction.

There are two ways for programmers to protect their software.

- 1. Return from ISR (Interrupt Service Routine) immediately while the Status register shows no interrupt.
- 2. Set I bit of MCU before performing Interrupt Masking, and then clear it after Interrupt Masking done.

Both can avoid the problem, but it is always recommended to use the first method list above.

3.5.1.2 External Interrupt

This interrupt controller also integrates an External Interrupt Controller that can support up to 4 interrupt requests coming from external sources, the EINT0~3, and 4 WakeUp interrupt requests, i.e. EINT4~7, coming from peripherals used to inform system to resume the system clock.

The four external interrupts can be used for different kind of applications, mainly for event detections: detection of hand free connection, detection of hood opening, detection of battery charger connection.

Since the external event may be unstable in a certain period, a de-bounce mechanism is introduced to ensure the functionality. The circuitry is mainly used to verify that the input signal remains stable for a programmable number of periods of the clock. When this condition is satisfied, for the appearance or the disappearance of the input, the output of the de-bounce logic changes to the desired state. Note that, because it uses the 32 KHz slow clock for performing the de-bounce process, the parameter of de-bounce period and de-bounce enable takes effect no sooner than one 32 KHz clock cycle (~31.25us) after the software program sets them. However, the polarities of EINTs are clocked with the system clock. Any changes to them take effect immediately.

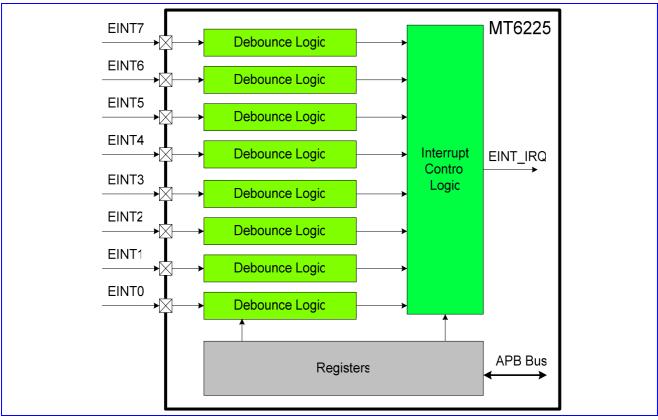


Figure 19 Block diagram of External Interrupt Controller

REGISTER ADDRESS	REGISTER NAME	SYNONYM
CIRQ + 0000h	IRQ Selection 0 Register	IRQ_SEL0
CIRQ + 0004h	IRQ Selection 1 Register	IRQ_SEL1
CIRQ + 0008h	IRQ Selection 2 Register	IRQ_SEL2
CIRQ + 000Ch	IRQ Selection 3 Register	IRQ_SEL3
CIRQ + 0010h	IRQ Selection 4 Register	IRQ_SEL4
CIRQ + 0014h	IRQ Selection 5 Register	IRQ_SEL5
CIRQ + 0018h	FIQ Selection Register	FIQ_SEL
CIRQ + 001Ch	IRQ Mask Register	IRQ_MASK
CIRQ + 0020h	IRQ Mask Disable Register	IRQ_MASK_DIS
CIRQ + 0024h	IRQ Mask Enable Register	IRQ_MASK_EN
CIRQ + 0028h	IRQ Status Register	IRQ_STA
CIRQ + 002Ch	IRQ End of Interrupt Register	IRQ_EOI
CIRQ + 0030h	IRQ Sensitive Register	IRQ_SENS
CIRQ + 0034h	IRQ Software Interrupt Register	IRQ_SOFT
CIRQ + 0038h	FIQ Control Register	FIQ_CON
CIRQ + 003Ch	FIQ End of Interrupt Register	FIQ_EOI
CIRQ + 0040h	Binary Coded Value of IRQ_STATUS	IRQ_STA2
CIRQ + 0044h	Binary Coded Value of IRQ_EOI	IRQ_EOI2
CIRQ + 0100h	EINT Status Register	EINT_STA
CIRQ + 0104h	EINT Mask Register	EINT_MASK
CIRQ + 0108h	EINT Mask Disable Register	EINT_MASK_DIS

CIRQ + 010Ch	EINT Mask Enable Register	EINT_MASK_EN
CIRQ + 0110h	EINT Interrupt Acknowledge Register	EINT_INTACK
CIRQ + 0114h	EINT Sensitive Register	EINT_SENS
CIRQ + 0120h	EINT0 De-bounce Control Register	EINT0_CON
CIRQ + 0130h	EINT1 De-bounce Control Register	EINT1_CON
CIRQ + 0140h	EINT2 De-bounce Control Register	EINT2_CON
CIRQ + 0150h	EINT3 De-bounce Control Register	EINT3_CON
CIRQ + 0160h	EINT4 De-bounce Control Register	EINT4_CON
CIRQ + 0170h	EINT5 De-bounce Control Register	EINT5_CON
CIRQ + 0180h	EINT6 De-bounce Control Register	EINT6_CON
CIRQ + 0190h	EINT7 De-bounce Control Register	EINT7_CON

Table 12 Interrupt Controller Register Map

3.5.2 Register Definitions

CIRQ+0000h IRQ Selection 0 Register

IRQ_SEL0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name					IRQ5					IRQ4				IR	Q3	
Type					R/W					R/W				R	/W	
Reset					5					4				;	3	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				IRQ2					IRQ1					IRQ0		
Type				R/W					R/W					R/W		
Reset				2					1					0		

CIRQ+0004h IRQ Selection 1 Register

IRQ_SEL1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name					IRQB					IRQA				IR	Q9	
Type					R/W					R/W				R/	W	
Reset					В					Α				Ç)	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				IRQ8					IRQ7					IRQ6		
Type				R/W					R/W					R/W		
Reset				8					7					6		

CIRQ+0008h IRQ Selection 2 Register

IRQ_SEL2

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name					IRQ11					IRQ10				IR	QF	
Type					R/W					R/W				R/	W	
Reset					11					10				F	=	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				IRQE					IRQD					IRQC		
Type				R/W					R/W					R/W		
Reset			•	Ē	•	•			D	•			•	С	•	

CIRQ+000Ch IRQ Selection 3 Register

IRQ_SEL3

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name					IRQ17					IRQ16				IRO	Q15	
Type					R/W					R/W				R	W	
Reset					17					16				1	5	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				IRQ14					IRQ13					IRQ12		

Type	R/W	R/W	R/W
Reset	14	13	12

CIRQ+0010h IRQ Selection 4 Register

IRQ_SEL4

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name					IRQ1D					IRQ1C				IRC)1B	
Type					R/W					R/W				R	W	
Reset					1D					1C				1	В	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				IRQ1A					IRQ19					IRQ18		
Type				R/W					R/W					R/W		
Reset				1A					19					18		

CIRQ+0014h IRQ Selection 5 Register

IRQ SEL5

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									IRQ1F					IRQ1E		
Type									R/W					R/W		
Reset			•			•			1F	•		•	•	1E		

CIRQ+0018h FIQ Selection Register

FIQ SEL

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														FIQ		
Type														R/W		
Reset														0		

The IRQ/FIQ Selection Registers provide system designers with a flexible routing scheme to make various mappings of priority among interrupt sources possible. It allows the interrupt sources to be mapped onto interrupt requests of either FIQ or IRQ. While only one interrupt source can be assigned to FIQ, the other ones should share IRQ by mapping them onto IRQ0 to IRQ1F, which are connected to IRQ controller. The priority of IRQ0-IRQ1F is fixed, i.e. IRQ0 > IRQ1 > IRQ2 > ... > IRQ1E > IRQ1F. During the software configuration process, the Interrupt Source Code of desired interrupt source should be written into source field of the corresponding IRQ_SEL0-IRQ_SEL4/FIQ_SEL. 5-bit Interrupt Source Codes for all interrupt sources are fixed and defined in **Table 13**. The IRQ/FIQ Selection Registers provide system designers with a flexible routing scheme to make various mappings of priority among interrupt sources possible. The registers allow the interrupt sources to be mapped onto interrupt requests of either FIQ or IRQ. While only one interrupt source can be assigned to FIQ, the other ones share IRQs by mapping them onto IRQ0 to IRQ1F connected to IRQ controller. The priority sequence of IRQ0~IRQ1F is fixed, i.e. IRQ0 > IRQ1 > IRQ2 > ... > IRQ1E > IRQ1F. During the software configuration process, the Interrupt Source Code of desired interrupt source should be written into source field of the corresponding IRQ_SEL0-IRQ_SEL4/FIQ_SEL. Five-bit Interrupt Source Codes for all interrupt sources are fixed and defined.

Interrupt Source	STA2 (Hex)	STA
MFIQ	0	00000001
TDMA_CTIRQ1	1	00000002
TDMA_CTIRQ2	2	00000004
DSP2CPU	3	00000008

SIM	4	00000010
DMA	5	00000020
TDMA	6	00000040
UART1	7	00000080
KeyPad	8	00000100
UART2	9	00000200
GPTimer	A	00000400
EINT	В	00000800
USB	С	00001000
MSDC	D	00002000
RTC	Е	00004000
IrDA	F	0008000
LCD	10	00010000
UART3	11	00020000
MIRQ	12	00040000
WDT	13	00080000
NOT USED	14	
Resizer	15	00200000
NFI	16	00400000
B2PSI	17	00800000
IRDBG	18	01000000
MSDC card detect	19	02000000
I ² C	1a	04000000
NOT USED	1b	
NOT USED	1c	
NOT USED	1d	
CAM	1e	40000000

Table 14 Interrupt Source Code for Interrupt Sources

FIQ, IRQ0-1F The 5-bit content of this field would be the Interrupt Source Code shown in **Table 15** indicating that the certain interrupt source uses the associated interrupt line to generate fast interrupt requests. The 5-bit content of this field corresponds to an Interrupt Source Code shown above.

CIRQ+001Ch IRQ Mask Register

IRQ_MASK

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	IRQ1F	IRQ1E	IRQ1 D	IRQ1 C	IRQ1 B	IRQ1 A	IRQ19	IRQ18	IRQ17	IRQ16	IRQ15	IRQ14	IRQ13	IRQ12	IRQ11	IRQ10
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	IRQF	IRQE	IRQD	IRQC	IRQB	IRQA	IRQ9	IRQ8	IRQ7	IRQ6	IRQ5	IRQ4	IRQ3	IRQ2	IRQ1	IRQ0
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

This register contains a mask bit for each interrupt line in IRQ Controller. The register allows each interrupt source IRQ0 to IRQ1F to be disabled or masked separately under software control. After a system reset, all bit values are set to 1 to indicate that interrupt requests are prohibited.

This register contains mask bit for each interrupt line in IRQ Controller. It allows each interrupt source of IRQ0 to IRQ1F to be disabled or masked out separately under software control. After System Reset, all bit values will be set to '1' to indicate that interrupt requests are prohibited.

IRQ0-1F Mask control for the associated interrupt source in the IRQ controllerMask Control for the Associated Interrupt Source in IRQ Controller

- Interrupt is enabled
- 1 Interrupt is disabled

CIRQ+0020h IRQ Mask Clear Register

IRQ_MASK_CL

R

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	IRQ1F	IRQ1E	IRQ1 D	IRQ1 C	IRQ1 B	IRQ1 A	IRQ19	IRQ18	IRQ17	IRQ16	IRQ15	IRQ14	IRQ13	IRQ12	IRQ11	IRQ10
Type	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	IRQF	IRQE	IRQD	IRQC	IRQB	IRQA	IRQ9	IRQ8	IRQ7	IRQ6	IRQ5	IRQ4	IRQ3	IRQ2	IRQ1	IRQ0
Type	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C

This register is used to clear bits in IRQ Mask Register. When writing to this register, the data bits that are HIGH cause the corresponding bits in IRQ Mask Register to be cleared. Data bits that are LOW have no effect on the corresponding bits in IRQ Mask Register.

This register is used to clear bits in the IRQ Mask Register. When writing to this register, the data bits that are high will cause the corresponding bits in the IRQ Mask Register to be cleared. Data bits that are low have no effect on the corresponding bits in the IRQ Mask Register

IRQ0-1F Clear corresponding bits in IRQ Mask Register.

- 0 nNo effect
- 1 Disable the corresponding MASK bit

CIRQ+0024h IRQ Mask SET Register

IRQ_MASK_SE

Ť

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	IRQ1F	IRQ1E	IRQ1 D	IRQ1 C	IRQ1 B	IRQ1 A	IRQ19	IRQ18	IRQ17	IRQ16	IRQ15	IRQ14	IRQ13	IRQ12	IRQ11	IRQ10
Type	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	IRQF	IRQE	IRQD	IRQC	IRQB	IRQA	IRQ9	IRQ8	IRQ7	IRQ6	IRQ5	IRQ4	IRQ3	IRQ2	IRQ1	IRQ0
Type	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S

This register is used to set bits in the IRQ Mask Register. When writing to this register, the data bits that are HIGH cause the corresponding bits in IRQ Mask Register to be set. Data bits that are LOW have no effect on the corresponding bits in IRQ Mask Register.

This register is used to set bits in the IRQ Mask Register. When writing to this register, the data bits that are high will cause the corresponding bits in the IRQ Mask Register to be set. Data bits that are low have no effect on the corresponding bits in the IRQ Mask Register

IRQ0-1F Set corresponding bits in IRQ Mask Register.

- 0 nNo effect
- 1 Enable corresponding MASK bit

IRQ STA

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16

Name	IRQ1F	IRQ1E	IRQ1 D	IRQ1 C	IRQ1 B	IRQ1 A	IRQ19	IRQ18	IRQ17	IRQ16	IRQ15	IRQ14	IRQ13	IRQ12	IRQ11	IRQ10
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	IRQF	IRQE	IRQD	IRQC	IRQB	IRQA	IRQ9	IRQ8	IRQ7	IRQ6	IRQ5	IRQ4	IRQ3	IRQ2	IRQ1	IRQ0
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This Register allows software to poll which interrupt line has generated an IRQ interrupt request. A bit set to 1 indicates a corresponding active interrupt line. Only one flag is active at a time. The IRQ_STA is type of read-clear; write access has no effect on the content.

This Register allows software to poll which interrupt line generates the IRQ interrupt request. A bit set to '1' indicates a corresponding active interrupt line. Only one flag is active at a time. The IRQ_STA is type of READ-Clear, write access will have no effect to the content.

IRQ0-1F Interrupt indicator for the associated interrupt source. Interrupt Indication for the Associated Interrupt Source

- **0** The associated interrupt source is non-active.
- 1 The associated interrupt source is asserted.

CIRQ+002Ch IRQ End of Interrupt Register

IRQ_EOI

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	IRQ1F	IRQ1E	IRQ1 D	IRQ1 C	IRQ1 B	IRQ1 A	IRQ19	IRQ18	IRQ17	IRQ16	IRQ15	IRQ14	IRQ13	IRQ12	IRQ11	IRQ10
Type	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	IRQF	IRQE	IRQD	IRQC	IRQB	IRQA	IRQ9	IRQ8	IRQ7	IRQ6	IRQ5	IRQ4	IRQ3	IRQ2	IRQ1	IRQ0
Туре	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register provides a mean for software to relinquish and to refresh the interrupt controller. Writing a 1 to a specific bit position results in an End of Interrupt command issued internally to the corresponding interrupt line.

This register provides a mean for software to relinquish and refresh the Interrupt Controller. Writing a '1' to the specific bit position will result in an End of Interrupt Command internally to the corresponding interrupt line.

IRQ0-1F End of Interrupt command for the associated interrupt line. End of Interrupt Command for the Associated Interrupt Line

- **0** No service is currently in progress or pending
- 1 Interrupt request is in-service

CIRQ+0030h IRQ Sensitive Register

IRQ SENS

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	IRQ1F	IRQ1E	IRQ1 D	IRQ1 C	IRQ1 B	IRQ1 A	IRQ19	IRQ18	IRQ17	IRQ16	IRQ15	IRQ14	IRQ13	IRQ12	IRQ11	IRQ10
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	IRQF	IRQE	IRQD	IRQC	IRQB	IRQA	IRQ9	IRQ8	IRQ7	IRQ6	IRQ5	IRQ4	IRQ3	IRQ2	IRQ1	IRQ0
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

All interrupt lines of IRQ Controller, IRQ0~IRQ1F can be programmed as either edge or level sensitive. By default, all the interrupt lines are edge sensitive and should be active LOW. Once a interrupt line is programmed as edge sensitive, an interrupt request is triggered only at the falling edge of interrupt line, and the next interrupt is not accepted

until the EOI command is given. However, level sensitive interrupts trigger is according to the signal level of the interrupt line. Once the interrupt line become from HIGH to LOW, an interrupt request is triggered, and another interrupt request is triggered if the signal level remain LOW after an EOI command. Note that in edge sensitive mode, even if the signal level remains LOW after EOI command, another interrupt request is not triggered. That is because edge sensitive interrupt is only triggered at the falling edge.

All interrupt lines of IRQ Controller, IRQ0-IRQ1F can be programmed as either edge or level sensitive. By default, all the interrupt lines are edge sensitive and should be active LOW. Once a interrupt line is programmed as edge sensitive, an interrupt request is triggered only at the falling edge of interrupt line, and the next interrupt will not be taken until the EOI command is given. However, level sensitive interrupt triggering is according to the signal level of the interrupt line. Once the interrupt line become from High to Low, an interrupt request is triggered, and another interrupt request will be triggered if the signal level remain Low after EOI command. Please note that in edge sensitive mode, even if the signal level remains Low after EOI command, another interrupt request will not be triggered. This is because edge sensitive interrupt is only triggered at the falling edge.

IRQ0-1F Sensitivity type of the associated Interrupt SourceSensitive Type of the Associated Interrupt Source

- Edge sensitivity with active LOW
- 1 Level sensitivity with active LOW

CIRQ+0034h IRQ Software Interrupt Register

IRQ_SOFT

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	IRQ1F	IRQ1E	IRQ1 D	IRQ1 C	IRQ1 B	IRQ1 A	IRQ19	IRQ18	IRQ17	IRQ16	IRQ15	IRQ14	IRQ13	IRQ12	IRQ11	IRQ10
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	IRQF	IRQE	IRQD	IRQC	IRQB	IRQA	IRQ9	IRQ8	IRQ7	IRQ6	IRQ5	IRQ4	IRQ3	IRQ2	IRQ1	IRQ0
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Setting "1" to the specific bit position generates a software interrupt for corresponding iInterrupt Lline before mask. This register is used for debug purpose.

IRQ0-IRQ1F Software Interrupt

CIRQ+0038h FIQ Control Register

FIQ CON

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name															SENS	MAS K
Type															R/W	R/W
Reset															0	1

This register provides a means for software program to control the FIQ cController.

MASK Mask cControl for the FIQ Interrupt Source

- **0** Interrupt is enabled
- 1 Interrupt is disabled

SENS Sensitivitye Ttype of the FIQ Interrupt Source

- Edge sensitivity with active LOW
- 1 Level sensitivity with active LOW

CIRQ+003Ch FIQ End of Interrupt Register

FIQ EOI

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																EOI
Type																WO
Reset																0

This register provides a means for software to relinquish and to refresh the FIQ controller. Writing a '1' to the specific bit position results in an End of Interrupt command issued internally to the corresponding interrupt line.

This register provides a mean for software to relinquish and refresh the FIQ Controller. Writing a '1' to the specific bit position will result in an End of Interrupt Command internally to the corresponding interrupt line.

EOI End of Interrupt Ccommand

CIRQ+0040h Binary Coded Value of IRQ_STATUS

IRQ_STA2

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name																	
Type																	
Reset																	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name								NOIR Q				STAS					
Type								RO				RO					
Reset								0				0					

This Register is a binary coded version of IRQ_STA. It is used by the software program to poll which interrupt line has generated the IRQ interrupt request in a much easier way. Any read to it has the same result as reading IRQ_STA. The IRQ_STA2 is also read-only; write access has no effect on the content. Note that IRQ_STA2 should be coupled with IRQ_EOI2 while using it.

This Register is a binary coded version of IRQ_STA. It is used for software program to poll and see which interrupt line generated the IRQ interrupt request in a much easier way. Any read to it has the same result as reading IRQ_STA. The IRQ_STA2 is also READ-ONLY, write access has no effect to the content. Note that, IRQ_STA2 should be coupled with IRQ_EOI2 while using it.

STSA Binary cCoded Vvalue of IRQ_STA

NOIRQ Indicating if there is an IRQ or not. If there is no IRQ, this bit will be highHIGH, and the value of STSA should be s 0 0000b.

CIRQ+0044h Binary Coded Value of IRQ_EOI

IRQ EOI2

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														EOI		
Type														WO		
Reset														0		

This register is a binary coded version of IRQ_EOI. It provides an easier way for software program to relinquish and to refresh the interrupt controller. Writing a specific code results in an End of Interrupt command issued internally to the corresponding interrupt line. Note that IRQ_EOI2 should be coupled with IRQ_STA2 while using it.

This register is a binary coded version of IRQ_EOI. It provides an easier way for software program to relinquish and refresh the Interrupt Controller. Writing a specific code will result in an End of Interrupt Command internally to the corresponding interrupt line. Note that, IRQ_EOI2 should be coupled with IRQ_STA2 while using it.

EOI Binary Ccoded Vvalue of IRQ EOI

CIRQ+0100h EINT Interrupt Status Register

EINT_STA

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									EINT7	EINT6	EINT5	EINT4	EINT3	EINT2	EINT1	EINT0
Type									RO							
Reset									0	0	0	0	0	0	0	0

This register keeps up with current status of which EINT Source generated the interrupt request. If EINT sources are set to edge sensitive, EINT IRQ will be de-asserted while this register is read.

EINTO-EINT7 Interrupt Status

- O No Iinterrupt Rrequest is generated
- 1 Interrupt Rrequest is pending

CIRQ+0104h EINT Interrupt Mask Register

EINT_MASK

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name		14	13	12	11	10	9	8	7 EINT7	_	_	4 EINT4	3 EINT3	2 EINT2	1 EINT1	
		14	13	12	11	10	9	8	7 EINT7 R/W	_	_	4 EINT4 R/W	3 EINT3 R/W	2 EINT2 R/W	1 EINT1 R/W	

This register controls whether or not EINT Source is allowed to generate an interrupt request. Setting a "1" to the specific bit position prohibits the external interrupt line from becoming active.

This register controls whether if EINT Source is allowed to generate interrupt request. Setting a "1" to the specific bit position prohibits the External Interrupt Line to active accordingly.

EINTO-EINT7 Interrupt Mask

- Interrupt rRequest is enabled.
- 1 Interrupt Rrequest is disabled.

CIRQ+0108h EINT Interrupt Mask Clear Register

EINT_MASK_C

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									EINT7	EINT6	EINT5	EINT4	EINT3	EINT2	EINT1	EINT0
Type									W1C							

This register is used to clear individual mask bits. Only the bits set to 1 are in effect, and interrupt masks for which the mask bit is set are cleared (set to 0). Otherwise the interrupt mask bit retains its original value.

This register is used to individually clear mask bit. Only the bits set to 1 are in effect, and these mask bits will set to 0. Otherwise mask bits keep original value.

EINTO-EINT7 Disable Mask mask for the aAssociated eExternal Iinterrupt sSource

- 0 Nno effect.
- 1 Disable the corresponding MASK bit.

CIRQ+010Ch EINT Interrupt Mask Set Register

EINT_MASK_S

ΕT

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							_	•					-			_
Name									EINT7			EINT4	EINT3	EINT2	EINT1	EINT0

This register is used to set individual mask bits. Only the bits set to 1 are in effect, and interrupt masks for which the mask bit is set are set to 1. Otherwise the interrupt mask bit retains its original value.

This register is used to individually set mask bit. Only the bits set to 1 are in effect, and these mask bits will set to 1. Otherwise mask bits keep original value.

EINTO-EINT7 Disable Mmask for the Aassociated Eexternal Iinterrupt Ssource.

- 0 Nno effect.
- 1 Enable corresponding MASK bit.

CIRQ+0110h EINT Interrupt Acknowledge Register

EINT_INTACK

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									EINT7	EINT6	EINT5	EINT4	EINT3	EINT2	EINT1	EINT0
Type									WO							
Reset									0	0	0	0	0	0	0	0

Writing "1" to the specific bit position acknowledge the interrupt request correspondingly to the external interrupt line source.

Writing "1" to the specific bit position means to acknowledge the interrupt request correspondingly to the External Interrupt Line source.

EINTO-EINT7 Interrupt aAcknowledgement

- 0 No effect.
- 1 Interrupt Request is acknowledged.

CIRQ+0114h EINT Sensitive Register

EINT_SENS

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									EINT7	EINT6	EINT5	EINT4	EINT3	EINT2	EINT1	EINT0
Type									R/W							
Reset									1	1	1	1	1	1	1	1

Sensitivity type of external interrupt source.

EINTO-7 Sensitive tType of the Aassociated Eexternal Iinterrupt sSource

- **0** Edge sensitivity.
- 1 Level sensitivity.

CIRQ+01m0h EINTn De-bounce Control Register

EINTn_CON

Type Reset																
		4.4	40	40	44	40	_	_		_		4	_			_
Bit	15	14	13	12	11	10									1	
Name		14	13	12	POL	10	9	8	/	6	CNT	4	3	2	1	
	EN	14	13	12		10	9	8	/	6		4	3	2	1	

These registers control the de-bounce logic for external interrupt sources in order to minimize the possibility of false activations.

These registers control the de-bounce logic for external interrupt sources in order to minimize the possibility of false activations. EINT4 – 7 have no de-bounce mechanism. Therefore only bit POL is used.

Note that n is from 0 to 7, and m is n plus+ 2.

CNT De-bounce Dduration in terms of numbers of 32KHz clock cycles

POL Activation tType of the EINT sSource

0 Negative polarity

1 Positive polarity

EN De-bounce cControl Ccircuit

0 Disable

1 Enable

3.6 Code Cache controller

3.6.1 General Description

A new subsystem consisting of cache and TCM (tightly coupled memory) will be implemented in MT6225. This subsystem is placed between MCU core and AHB bus interface, as shown in Figure 20.

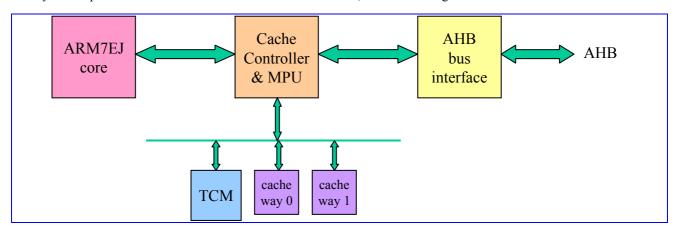


Figure 20 Cache and TCM subsystem

TCM is a high-speed (zero wait state) dedicated memory accessed by MCU exclusively. Because MCU can run at 104MHz and on-chip bus runs at maximum 52MHz, there will be latency penalty when MCU accesses memory or peripherals through on-chip bus. By moving timing critical code and data into TCM, MCU performance can be increased and the response to particular events can be guaranteed.

Another method to increase MCU performance is the introduction of cache. Cache is a small memory, keeping the copy of external memory. If MCU reads a cacheable data, the data will be copied to cache. Once MCU needs the same data

later, it can get it directly from cache (called cache hit) instead of from external memory, which takes long time compared to high-speed (zero wait state) cache memory.

Since a large external memory maps to a small cache, cache can hold only a small portion of external memory. If MCU accesses a data not found in cache (called cache miss), some contents of cache must be dropped (flushed) and the required data is transferred from external memory (called cache line fill) and stored to cache. On the other hand, TCM is not the copy of anything else. The best way to use TCM is to put critical code/data in TCM in the memory usage plan. After power on reset, the boot loader copies TCM contents from external storage (such like flash) to internal TCM. If necessary, MCU can replace a portion of TCM content with other data on external storage in the runtime to implement a mechanism such like "overlay". TCM is also an ideal place to put stack data.

The sizes of TCM and cache can be set to one of 3 configurations:

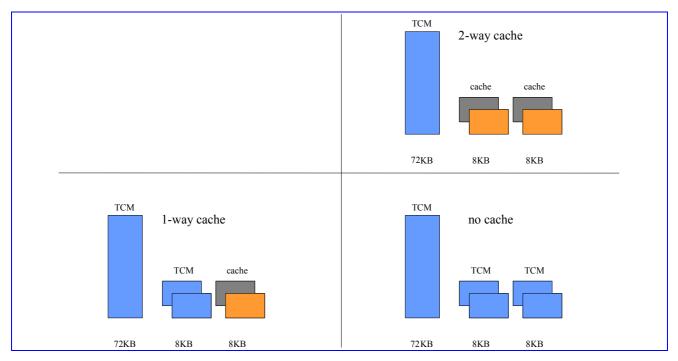


Figure 21 Configurations of TCM and cache

- 72KB TCM, 16KB cache
- 80KB TCM, 8KB cache
- 88KB TCM, 0KB cache

These configurations provide flexibility for software to adjust for optimum system performance.

The address mapping of these memories is like the following:

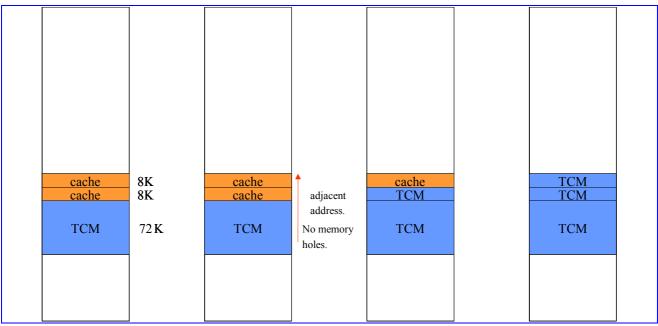


Figure 22 Memory mapping of TCM and cache

In Figure 22, MCU could only access TCM explicitly. Cache is transparent to MCU.

3.6.2 Organization of Cache

The cache system has the following features:

- Write through (no write allocation)
- Configurable 1/2 way set associative (8K/16K)
- Each way has 256 cache lines with 8 word line size (256*8*4=8KB)
- 19-bit tag address and 1 valid bit for each cache line.

One way of cache comprises of two memory: tag memory and data memory. Tag memory stores each line's valid bit, dirty bit and tag (upper part of address). Data memory stores line data. When MCU accesses memory, the address is compared to the contents of tag memory. First the line index (address bit [12:5]) is used to locate a line, and then the tag of the line is compared to upper part of address (bit [31:13]). If two parts match and valid bit is 1, it is said a cache hit and data from that particular way is sent back to MCU. This process is illustrated in the following figure:

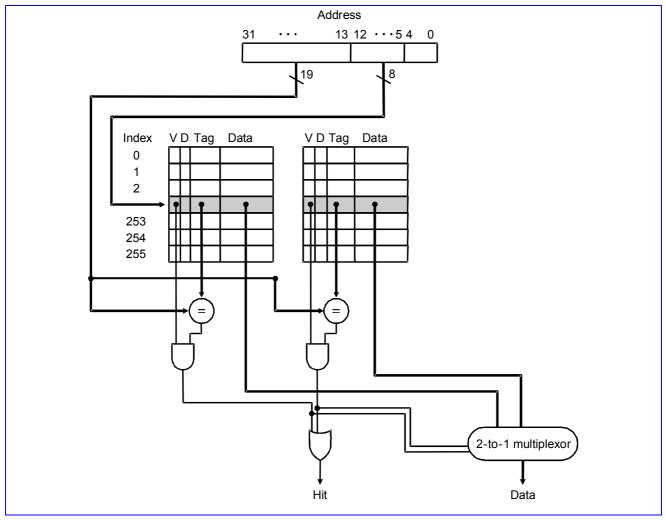


Figure 23 Tag comparison of 2-way cache

If most memory accesses are cache hit, MCU could get data immediately without wait states and the overall system performance is higher. There are several factors that may affect cache hit rate:

• Cache size and the organization

The larger the cache size is, the higher the hit rate is. But the hit rate starts to saturate when cache size is larger than a threshold size. Normally the size of 16KB and above and two or four way can achieve a good hit rate.

Program behavior

If the system has several numbers of tasks that switch fast, it may cause cache contents to flush frequently. Because each time a new task is run, the cache will hold its data after some time. If next task uses data in the memory that occupy the same cache entries as previous task, it will cause cache contents to be flushed to store data of the new task. Interrupts also cause program flow to change dynamically. The interrupt handler code itself and the data it processes may cause cache to flush some data used by current task. Thus after exiting interrupt handler and returning to current task, the flushed data may need to be filled to cache again, resulting performance degradation.

To help software engineer tune system performance, the cache controller in MT6225 records the numbers of cache hit count and cacheable memory accesses. Cache hit rate can be obtained from these two numbers.

The cache sub system also has a module called MPU (memory protection unit). MPU can prevent illegal memory accesses and specify which memory region is cacheable or non-cacheable. Two fields in CACHE_CON register control

the enable of MPU functions. MPU has its own registers to define memory region and associated regions. These settings only take effect after the enable bits in CACHE_CON are set to 1. For more details on the settings, please refer to MPU part of the specification.

3.6.3 Cache Operations

Upon power on, cache memory contains random numbers and can't be used by MCU. Therefore MCU must have some means to "clean" cache memory before enabling them. Both above cases need a mechanism for MCU to perform operations on cache. The cache controller provides a register which, when written, could do operations on cache memory. These are called cache operations, including

• Invalidate one cache line

The user must give a memory address. If it is found within cache, that particular line is invalidated (clear valid bit to 0). Alternatively, the user can specify which set/way of cache to be invalidated.

Invalidate all cache lines

The user needs not to specify an address. The cache controller hardware automatically clears valid bits in each tag memory.

3.6.4 Cache Controller Register Definition

CACHE base address is assumed 0x80700000 (subject to change).

CACHE+00h Cache General Control Register

CACHE_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							CACH	ESIZE					CNTE N1	CNTE N0	MPEN	MCE N
Type							R\	W					RW	RW	R/W	R/W
Reset							0	0					0	0	0	0

This register determines the cache size, cache hit counter and the enable of MPU.

CACHESIZE Cache Size Select

00 no cache (88KB TCM)

01 8KB, 1-way cache (80KB TCM)

10 16KB, 2-way cache (72KB TCM)

CNTEN1 Enable cache hit counter 1

If enabled, cache controller will increase a 48-bit counter each time a cache hit occurs. This number can provide a reference of performance measurement for tuning of application programs. This counter increments only when the cacheable information is from MPU cacheable region $4\sim7$.

0 disable

1 enable

CNTEN0 Enable cache hit counter 0

If enabled, cache controller will increase a 48-bit counter each time a cache hit occurs. This number can provide a reference of performance measurement for tuning of application programs. This counter increments only when the cacheable information is from MPU cacheable region 0~3.

0 disable

1 enable

MPEN Enable MPU comparison of read/write permission setting

If disabled, MCU could access any memory without any restriction. If enabled, MPU would compare the address of MCU to its setting. If an address falls into a restricted region, MPU would stop this memory access and send "ABORT" signal to MCU. Please refer to MPU part of the specification for more details.

- 0 disable
- 1 enable

MCEN Enable MPU comparison of cacheable/non-cacheable setting

If disabled, MCU memory accesses are all non-cacheable, i.e., they will go through AHB bus (except for TCM). If enabled, the setting in MPU will take effect. If MCU accesses a cacheable memory region, the cache controller will return the data in cache if it's found in cache, and will get the data through AHB bus only if a cache miss occurs. Please refer to MPU part of the specification for more details.

- 0 disable
- 1 enable

CACHE+04h Cache Operation

CACHE_OP

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							•	TADDR	[31:16]							
Type	R/W															
Reset								()							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					TA	DDR[1	5:5]						OP	3:0]		EN
Type						R/W							٧	V		W1
Reset						0							()		0

This register defines the address and/or which kinds of cache operations to be taken. When MCU writes this register, the pipeline of MCU will be stopped for the cache controller to complete the operation. Bit 0 of the register must be written 1 to enable the command.

TADDR[31:5] Target Address

This field contains the address of invalidation operation. If OP[3:0]=0010, TADDR[31:5] is the address[31:5] of a memory whose line will be invalidated if it exists in the cache. If OP[3:0]=0100, TADDR[12:5] indicates the set, while TADDR[19:16] indicates which way to clear:

0001 way #0

0010 way #1

0100 way #2

1000 way #3

OP[3:0] Operation

This field determines which cache operations will be performed.

0001 invalidate all cache lines

0010 invalidate one cache line using address

0100 invalidate one cache line using set/way

EN Enable command

This enable bit must be written 1 to enable the command.

1 enable

0 not enable

CACHE HCNT0

CACHE+08h Cache Hit Count 0 Lower Part

_		$\mathbf{}$		١
				i

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type								R/	W							
Reset								()							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							CI	HIT_CN	IT0[15:	0]						
Type								R/	W							
Reset								()							

CACHE+0Ch Cache Hit Count 0 Upper Part

CACHE_HCNT0

Bit	31															
Name								RESE	RVED							
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							CH	IIT_CN	T0[47:3	32]						
Type								R/	W							
Reset				•		•		()		•					

When CNTEN0 bit in CACHE CON register is set to 1 (enabled), this register starts to record cache hit count until it is disabled. If the value increases to over maximum value (0xffffffffff), it will be rolled over to 0 and continue counting. The 48 bit counter can provide a recording time of 31 days even if MCU runs at 104MHz and every cycle is a cache hit.

Note that before enabling the counter, it is recommended to write the initial value of zero to the counter.

CHIT_CNT0[47:0] Cache Hit Count 0

> WRITE writing any value to CACHE HCNT0L or CACHE HCNT0U clears CHIT CNT0 to all zeros **READ** current counter value

CACHE+10h Cacheable Access Count 0 Lower Part

CACHE_CCNT0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							CA	CC_CN	IT0[31:	16]						
Type								R/	W							
Reset								()							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							CA	CC_C	NT0[15	:0]						
Type								R/	W							
Reset		0														

CACHE+14h Cacheable Access Count 0 Upper Part

CACHE_CCNT0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								RESE	RVED							
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							CA	CC_CN	IT0[47:	32]						
Type								R/	W							
Reset								()							

When CNTEN0 bit in CACHE_CON register is set to 1 (enabled), this register is incremented at each cacheable memory access (no matter it's a cache miss or a cache hit). If the value increases to over maximum value (0xfffffffffff), it will be rolled over to 0 and continue counting. For 104MHz MCU speed, if all memory accesses are cacheable and cache hit, this counter will overflow after $(2^48) * 9.6$ ns = 31 days. This is the shortest time for the counter to overflow. In a more realistic case, the system will have cache misses, non-cacheable accesses, idle mode that makes the counter overflow at later time.

CACC_CNT0[47:0] Cache Access Count 0

WRITE writing any value to CACHE CCNT0L or CACHE CCNT0U clears CACC CNT0 to all zeros **READ** current counter value

The best way to use CACHE_HCNT0 and CACHE_CCNT0 is to set zero as initial value in both registers, enable both counters (set CNTEN0 to 1), run a portion of program to be benchmarked, stop the counters and get their values. Therefore during this period

$$Cache\ hit\ rate = \frac{CACHE_HCNT}{CACHE_CCNT} \times 100\%\ .$$

The cache hit rate value may help tune the performance of application program.

Note that CHIT_CNT0 and CACC_CNT0 only increment if the cacheable attribute is defined in MPU cacheable region 0~3.

CACHE+18h Cache Hit Count 1 Lower Part

CACHE_HCNT1

L

Bit	31	30 29 28 27 26 25 24 23 22 21 20 19 18 17 16														
Name							CH	IIT_CN	T1[31:1	[6]						
Type								R/	W							
Reset								()							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							CI	HIT_CN	IT1[15:	0]						
Type		•	•	•		•		R/	W		•	•			•	
Reset		0														

CACHE+1Ch Cache Hit Count 1 Upper Part

CACHE_HCNT1

٠.

Bit	31											20	18	17		
Name		-	-	-	_	-	-	RESE	RVED	-	_	-	-	_	_	
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							CH	IIT_CN	T1[47:3	32]						
Type		•				•		R/	W	•	•	•				
Reset		•				•		()	•	•	•				

When CNTEN1 bit in CACHE_CON register is set to 1 (enabled), this register starts to record cache hit count until it is disabled. If the value increases to over maximum value (0xfffffffffff), it will be rolled over to 0 and continue counting. The 48 bit counter can provide a recording time of 31 days even if MCU runs at 104MHz and every cycle is a cache hit.

Note that before enabling the counter, it is recommended to write the initial value of zero to the counter.

CHIT_CNT1[47:0] Cache Hit Count

WRITE writing any value to CACHE_HCNT1L or CACHE_HCNT1U clears CHIT_CNT1 to all zeros READ current counter value

CACHE+20h Cacheable Access Count 1 Lower Part

CACHE_CCNT1

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Name CACC_CNT1[31:16] Type R/W Reset 0 15 12 11 10 0 Bit 14 13 9 8 7 6 5 4 3 2 1 CACC_CNT1[15:0] Name R/W Type Reset

CACHE+24h Cacheable Access Count 1 Upper Part

CACHE_CCNT1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								RESE	RVED							
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							CA	CC_CN	IT1[47:	32]						
Type								R/	W							
Reset								()							

When CNTEN1 bit in CACHE_CON register is set to 1 (enabled), this register is incremented at each cacheable memory access (no matter it's a cache miss or a cache hit). If the value increases to over maximum value (0xffffffffffff), it will be rolled over to 0 and continue counting. For 104MHz MCU speed, if all memory accesses are cacheable and cache hit, this counter will overflow after (2^48) * 9.6ns = 31 days. This is the shortest time for the counter to overflow. In a more realistic case, the system will have cache misses, non-cacheable accesses, idle mode that makes the counter overflow at later time.

CACC_CNT1[47:0] Cache Access Count 1

WRITE writing any value to CACHE_CCNT1L or CACHE_CCNT1U clears CACC_CNT1 to all zeros **READ** current counter value

The best way to use CACHE_HCNT1 and CACHE_CCNT1 is to set zero as initial value in both registers, enable both counters (set CNTEN1 to 1), run a portion of program to be benchmarked, stop the counters and get their values. Therefore during this period

Cache hit rate =
$$\frac{CACHE_HCNT}{CACHE_CCNT} \times 100\%$$
.

The cache hit rate value may help tune the performance of application program.

Note that CHIT_CNT1 and CACC_CNT1 only increment if the cacheable attribute is defined in MPU cacheable region 4~7.

3.7 **MPU**

3.7.1 General Description

The purpose of MPU is to provide protection mechanism and cacheable indication of memory. The planned features of MPU include

• 8-entry protection settings.

Determine if MCU can read/write a memory region. If the setting doesn't allow MCU's particular access to a memory address, MPU will stop the memory access and issue "ABORT" signal to MCU, making it entering into "abort" mode. The exception handler must then process the situation.

• 8-entry cacheable settings.

Determine a memory region is cacheable or not. If cacheable, MCU will keep a small copy in its cache after read accesses. If MCU requires the same data later, it can get it from the high-speed local copy, instead of from low-speed external memory.

Normally the protection and cacheable attributes are combined together for the same address range, as in the example of ARM946E. For greater flexibility, the MPU in MT6225 provides independent protection and cacheable settings. That

is to say, the memory regions defined for memory protection and for cacheable are different and independent of each other.

The 4GB memory space is divided to 16 memory blocks of 256MB size, i.e., MB0~MB15. EMI takes MB0~MB3, SYSRAM takes MB4, IDMA uses MB5, peripherals and other hardware take MB6~MB9, TCM (tightly-coupled memory used by MCU exclusively) uses MB10. The characteristics of these memory blocks are listed below:

- Read/write protection setting
 - MB5 and above (except MB10) are always readable/writeable.
 - MB0~MB4 and MB10 are determined by MPU.
- Cacheable setting
 - MB4 and above are always non-cacheable.
 - MB0~MB3 are determined by MPU.

3.7.2 Protection Settings

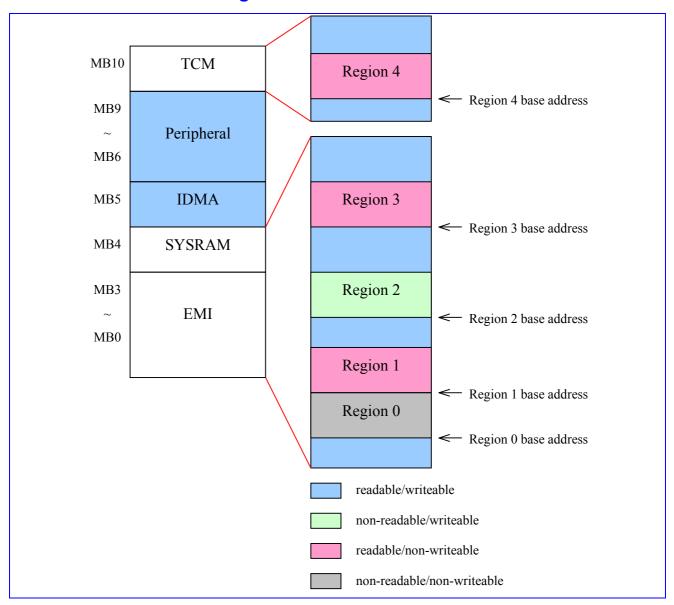


Figure 24 Protection setting

Figure 24 shows the protection setting in each memory block. Five regions are defined in the figure. Note that each region can be continuous or non-continuous to each other, and those address ranges not covered by any region are set to be readable/writeable automatically. One restriction exists: different regions must not overlap.

The user can define maximum 8 regions in MB0~MB4 and MB10. Each region has its own setting defined in a 32-bit register:

31	10		7 6	5	1	0
base address		00	prot	size		EN

- Region base address (22 bits)
- Region size (5 bits)
- Region protection attribute (2 bits)
- Enable bit (1 bit)

MPU will abort MCU if it accesses MB11~MB15 regions.

3.7.2.1 Region base address

Region base address defines the start of the memory region. The user needs only to specify several upper address bits. The number of valid address bits depends on the region size. The user must align the base address to a region-size boundary. For example, if a region size is 8KB, its base address must be a multiple of 8KB.

3.7.2.2 Region size

The bit encoding of region size and its relationship with base address are listed as follows.

Region size	Bit encoding	Base address
1KB	00000	Bit [31:10] of region start address
2KB	00001	Bit [31:11] of region start address
4KB	00010	Bit [31:12] of region start address
8KB	00011	Bit [31:13] of region start address
16KB	00100	Bit [31:14] of region start address
32KB	00101	Bit [31:15] of region start address
64KB	00110	Bit [31:16] of region start address
128KB	00111	Bit [31:17] of region start address
256KB	01000	Bit [31:18] of region start address
512KB	01001	Bit [31:19] of region start address
1MB	01010	Bit [31:20] of region start address
2MB	01011	Bit [31:21] of region start address
4MB	01100	Bit [31:22] of region start address
8MB	01101	Bit [31:23] of region start address
16MB	01110	Bit [31:24] of region start address

Table 16 Region size and bit encoding

3.7.2.3 Region protection attribute

This attribute has two bits. The MSB determines read access permission, and the LSB for write access permission.

Bit encoding	Permission

00	non-readable / non-writeable
10	readable / non-writeable
01	non-readable / writeable
11	readable / writeable

Table 17 Region protection attribute bit encoding

Note that bit encoding "11" allows full read/write permission, which is the case when no region is specified. So it is recommended to only specify regions with protection attribute "00", "10" or "01".

3.7.3 Cacheable Settings

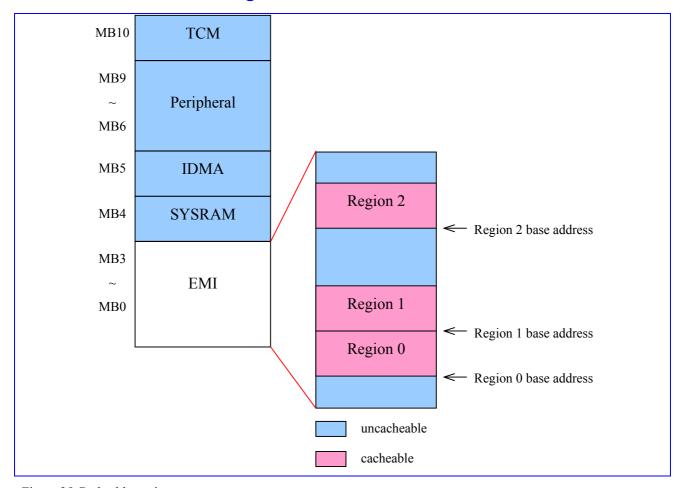


Figure 25 Cacheable setting

Figure 25 shows the cacheable setting in each memory block. Three regions are defined in the figure. Note that each region can be continuous or non-continuous to each other, and those address ranges not covered by any region are set to be uncacheable automatically. One restriction exists: different regions must not overlap.

The user can define maximum 8 regions in MB0~MB3. Each region has its own setting defined in a 32-bit register:

31	10		6	5	1	0
base address		000	С	size		EN

- Region base address (22 bits)
- Region size (5 bits)
- Region cacheable attribute (1 bit)

• Enable bit (1 bit)

The region base address and region size bit encoding are the same as those of protection setting. The user must also align the base address to a region-size boundary. The cacheable attribute has the following meaning.

Bit encoding	Attribute
0	uncacheable
1	cacheable

Table 18 Region cacheable attribute bit encoding

3.7.4 MPU Register Definition

MPU base address is assumed 0x80701000 (subject to change).

MPU+0000h Protection setting for region 0

MPU_PROT0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							BA	SEAD	DR[31:	16]						
Type		RW														
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		BA	SEADI	DR[15:	10]				ATTF	R[1:0]		5	SIZE[4:	0]		EN
Type			R	W					R	W			RW			RW
Reset			•	•	•	•			1	1			00000	•	•	0

This register sets protection attributes for region 0.

BASEADDR Base address of this region

ATTR Protection attribute

00 non-readable / non-writeable

01 non-readable / writeable

10 readable / non-writeable

11 readable / writeable

SIZE size of this region

00000 1KB

00001 2KB

00010 4KB

00011 8KB

00100 16KB

00101 32KB

00110 64KB

00111 128KB

01000 256KB

01001 512KB

01010 1MB

01011 2MB

01100 4MB

01101 8MB

01110 16MB

EN enable this region

0 Disable

1 Enable

MPU+0004h Protection setting for region 1

MPU_PROT1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							BA	SEAD	DR[31:	16]						
Type								R	W							
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		BA	SEADI	DR[15:	10]				ATTE	R[1:0]		S	IZE[4:0)]		EN
Type			R	W					R	W			RW			RW
Reset		•	•			•			1	1		•	00000			0

This register sets protection attributes for region 1.

MPU+0008h Protection setting for region 2

MPU_PROT2

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							BA	SEADI	DR[31:	16]						
Type								R	W							
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		BA	SEAD	DR[15:	10]				ATTF	R[1:0]		S	IZE[4:0)]		EN
Type			R	W					R	W			RW			RW
Reset									1	1			00000			0

This register sets protection attributes for region 2.

MPU+000Ch Protection setting for region 3

MPU_PROT3

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							BA	SEADI	DR[31:	16]						
Type								R	W							
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		BA	SEADI	DR[15:	10]				ATTE	R[1:0]		S	IZE[4:0)]		EN
Type			R	W					R	W			RW			RW
Reset		•	•	•	•	•			1	1		•	00000	•		0

This register sets protection attributes for region 3.

MPU+0010h Protection setting for region 4

MPU_PROT4

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							BA	SEAD	DR[31:	16]						
Type								R	W							
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		BA	SEADI	DR[15:	10]				ATTE	R[1:0]		S	IZE[4:0)]		EN
Туре			R	W					R	W			RW			RW
Reset					•	•			1	1			00000	•	•	0

This register sets protection attributes for region 4.

MPU+0014h Protection setting for region 5

MPU_PROT5

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							BA	SEADI	DR[31:	16]						
Type								R	W							
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		BA	SEADI	DR[15:	10]				ATTE	R[1:0]		S	IZE[4:0)]		EN
Type			R	W					R	W			RW			RW
Reset									1	1			00000			0

This register sets protection attributes for region 5.

MPU+0018h Protection setting for region 6

MPU_PROT6

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							BA	SEAD	DR[31:	16]						
Type								R	W							
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		BA	SEADI	DR[15:	10]				ATT	R[1:0]		5	SIZE[4:0	0]		EN
Type			R	W					R	W			RW			RW
Reset									1	1			00000			0

This register sets protection attributes for region 6.

MPU+001Ch Protection setting for region 7

MPU_PROT7

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							BA	SEADI	DR[31:	16]						
Type								R	W							
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		BA	SEAD	DR[15:	10]				ATTF	R[1:0]			SIZE[4:	0]		EN
Type			R	W					R	W			RW			RW
Reset									1	1			00000			0

This register sets protection attributes for region 7.

MPU+0040h Cacheable setting for region 0

MPU_CACHE0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							BA	SEAD	DR[31:	16]						
Type		RW														
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		BA	SEADI	DR[15:	10]					С		5	IZE[4:0)]		EN
Туре			R	W						RW			RW			RW
Reset										0			00000			0

This register sets cacheable attributes for region 0.

BASEADDR Base address of this region

C Cacheable attribute

0 uncacheable

1 cacheable

SIZE size of this region

00000 1KB

00001 2KB

00010 4KB

00011 8KB

00100 16KB

00101 32KB

00110 64KB

00111 128KB

01000 256KB

01001 512KB

01010 1MB

01011 2MB

01100 4MB

01101 8MB

01110 16MB

EN enable this region

0 Disable

1 Enable

MPU+0044h Cacheable setting for region 1

MPU_CACHE1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							BA	SEADI	DR[31:	16]						
Type								R	W							
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		BA	SEAD	DR[15:	10]					С		S	IZE[4:0	0]		EN
Type			R	W						RW			RW			RW
Reset				•						0			00000	•	•	0

This register sets cacheable attributes for region 1.

MPU+0048h Cacheable setting for region 2

MPU_CACHE2

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							BA	SEAD	DR[31:	16]						
Type								R	W							
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		BA	SEADI	DR[15:	10]					С		S	IZE[4:0	0]		EN
Type			R	W						RW			RW			RW
Reset										0			00000			0

This register sets cacheable attributes for region 2.

MPU+004Ch Cacheable setting for region 3

MPU_CACHE3

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							BA	SEAD	DR[31:	161						
Туре		RW														
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		BA	SEADI	DR[15:	10]					C		S	IZE[4:0)]		EN
Type			R	W						RW			RW			RW
Reset										0			00000			0

This register sets cacheable attributes for region 3.

MPU+0050h Cacheable setting for region 4

MPU_CACHE4

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							BA	SEAD	DR[31:	16]						
Type								R	W							
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		BA	SEAD	DR[15:	10]					С		S	IZE[4:	0]		EN
Type			R	W						RW			RW			RW
Reset										0			00000			0

This register sets cacheable attributes for region 4.

MPU+0054h Cacheable setting for region 5

MPU_CACHE5

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							BA	SEADI	DR[31:	16]						
Type								R	W							
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		BA	SEAD	DR[15:	10]					С		S	IZE[4:0)]		EN
Type			R	W						RW			RW			RW
Reset										0			00000			0

This register sets cacheable attributes for region 5.

MPU+0058h Cacheable setting for region 6

MPU_CACHE6

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							BA	SEAD	DR[31:	16]						
Type								R	W							
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		BA	SEADI	DR[15:	10]					С		S	IZE[4:0	0]		EN
Type			R	W						RW			RW			RW
Reset		•								0		•	00000			0

This register sets cacheable attributes for region 6.

MPU+005Ch Cacheable setting for region 7

MPU_CACHE7

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							BA	SEADI	DR[31:	16]						
Type								R	W							
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		BA	SEADI	DR[15:	10]					С		S	IZE[4:0)]		EN
Type			R	W						RW			RW			RW
Reset										0			00000			0

This register sets cacheable attributes for region 7.

3.8 Internal Memory Interface

3.8.1 System RAM

MT6225 provides one 72K Bytes size of on-chip memory modules acting as System RAM for data access with low latency. Such a module is composed of one high speed synchronous SRAM with AHB Slave Interface connected to the system backbone AHB Bus, as shown in **Figure 26**. The synchronous SRAM operates on the same clock as the AHB Bus and is organized as 32 bits wide with 4 byte-write signals capable for byte operations. The SRAM macro has limited repair capability. The yield of SRAM is improved if the defects inside it can be repaired during testing.

3.8.2 System ROM

The 15K Bytes System ROM is primarily used to store software program for Factory Programming and security-related routines. This module is composed of high-speed ROM with an AHB Slave Interface connected to a system backbone AHB, shown in **Figure 26**. The module operates on the same clock as the AHB and has a 32-bit wide organization.

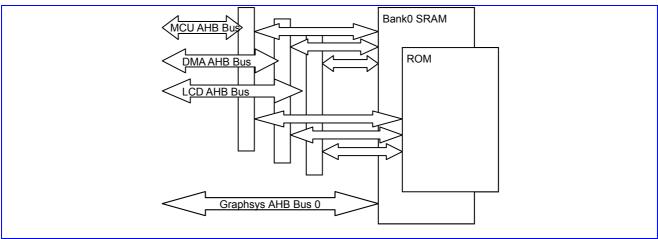


Figure 26: Block Diagram of the Internal Memory Controller

3.9 External Memory Interface

3.9.1 General Description

MT6225 incorporates a powerful and flexible memory controller, External Memory Interface, to connect with a variety of memory components. This controller provides one generic access scheme for Flash Memory, SRAM, PSRAM and CellularRAM and another access scheme for MobileRAM. Up to 3 memory banks can be supported simultaneously, BANK0-BANK2, with a maximum size of 64MB each.

Since most of the Flash Memory, SRAM, PSRAM and CellularRAM have similar AC requirements, a generic configuration scheme to interface them is desired. This way, the software program can treat different components by simply specifying certain predefined parameters. All these parameters are based on the cycle time of system clock.

The interface definition based on such a scheme is listed in **Table 19**. Note that, this interface always works with data in Little Endian format for all types of access.

Signal Name	Type	Description
EA[25:0]	О	Address Bus
ED[15:0]	I/O	Data Bus
EWR#	О	Write Enable Strobe/MobileRAM Command Input
ERD#	О	Read Enable Strobe
ELB#	О	Lower Byte Strobe/MobileRAM Data Input & Output Mask
EUB#	О	Upper Byte Strobe/MobileRAM Data Input & Output Mask
ECS[3:0]#	О	BANK0~BANK3 Selection Signal
EPDN	О	PSRAM Power Down Control Signal
ECLK	О	Flash, SRAM, PSRAM and CellularRAM Clock Signal
EADV#	О	Flash, SRAM, PSRAM and CellularRAM Address Valid Signal
EWAIT	I	Flash, SRAM, PSRAM and CellularRAM Wait Signal Input
EDCLK	О	MobileRAM Clock Signal
ECKE	О	MobileRAM Clock Enable Signal
ERAS#	О	MobileRAM Row Address Signal
ECAS#	О	MobileRAM Column Address Signal

Table 19 External Memory Interface Signal of MT6225

REGISTER ADDRESS	REGISTER NAME	SYNONYM
EMI + 0000h	EMI Control Register for BANK0	EMI_CONA
EMI + 0008h	EMI Control Register for BANK1	EMI_CONB
EMI + 0010h	EMI Control Register for BANK2	EMI_CONC
EMI + 0040h	EMI Control Register 0 for MobileRAM	EMI_CONI
EMI + 0048h	EMI Control Register 1 for MobileRAM	EMI_CONJ
EMI + 0050h	EMI Control Register 2 for MobileRAM	EMI_CONK
EMI + 0058h	EMI Control Register 3 for MobileRAM	EMI_CONL
EMI + 0060h	EMI Remap Control Register	EMI_REMAP
EMI + 0068h	EMI General Control Register 0	EMI_GENA
EMI + 0070h	EMI General Control Register 1	EMI_GENB

Table 20 External Memory Interface Register Map

3.9.2 Register Definitions

EMI+0000h EMI Control Register for BANK 0

EMI_CONA

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		C2WS			C2 ¹	WH			C2RS			PR	LT		CLKE N	PMO DE
Туре		R/W			R/	W			R/W			R	W		R/W	R/W
Reset		0			()			0)		0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	DW	RBLN	BW			WST			WAIT	PSIZE				RLT		
Туре	R/W	R/W	R/W		R/W				R/W	R/W		R/W				
Reset	0	1	0		0				0	0	7					

EMI+0008h EMI Control Register for BANK 1

EMI_CONB

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		C2WS			C2WH				C2RS			PR	RLT		CLKE N	PMO DE
Type		R/W			R/	W			R/W			R/	W		R/W	R/W
Reset		0			()			0			(0		0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	DW	RBLN	BW			WST			WAIT	PSIZE				RLT		
Type	R/W	R/W	R/W		R/W				R/W	R/W		R/W				
Reset	0	1	0		0				0	0						

EMI+0010h EMI Control Register for BANK 2

EMI_CONC

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		C2WS			C21	WH			C2RS			PR	RLT		CLKE N	PMO DE
Type		R/W			R/	W			R/W			R	W		R/W	R/W
Reset		0			()			0			(0		0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	DW	RBLN	BW			WST			WAIT	PSIZE				RLT		
Type	R/W	R/W	R/W			R/W			R/W	R/W				R/W		
Reset	0	1	0		0				0	0		7				

For each bank (BANK0-BANK2), a dedicated control register is associated with the bank controller. These registers have timing parameters that help the controller to convert memory access into proper timing waveform. Note that,

except for parameters CLKEN, PMODE, DW, RBLN, BW, WAIT and PSIZE, all the other parameters specified explicitly are based on system clock speed in terms of cycle count.

RLT Read Latency Time

Specifies the number of wait-states to insert in the bus transfer to the requesting agent. Such a parameter must be chosen carefully to meet the timing specification requirements for common parameter tACC(address access time) for asynchronous-read device and tCWT(chip select low to wait valid time) for synchronous-read device. An example is shown below.

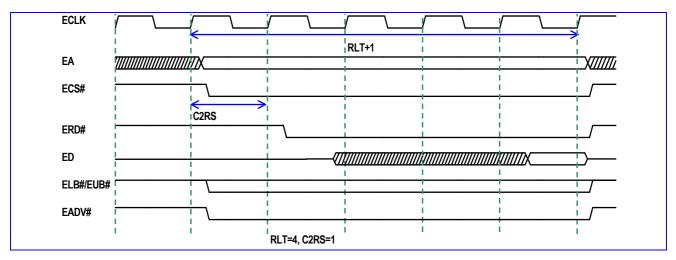


Figure 27 Read Wait State Timing Diagram for Asynchronous-Read Memory (CLKEN=0)

Access Time	Read Latency Time in 104 MHz unit
65 ns ~ 70 ns	7
85 ns ~ 90 ns	9
110 ns ~ 120 ns	12

Table 21 Reference value of Read Latency Time for Asynchronous-Read memory Devices

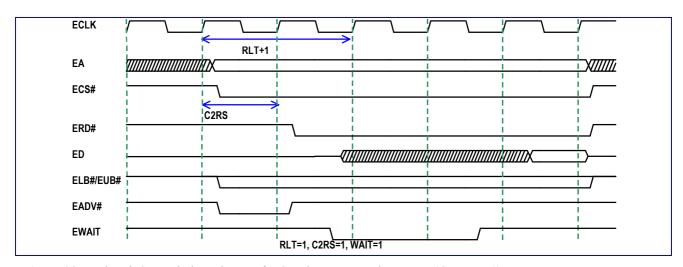


Figure 28 Read Wait State Timing Diagram for Synchronous-Read Memory (CLKEN=1)

ECS# Low to EWAIT Valid	Read Latency Time in 104 MHz unit
0 ns ~ 10 ns	1
10 ns ~ 20 ns	2

Table 22 Reference value of Read Latency Time for Synchronous-Read Devices

PSIZE This bit position describes the page size behavior of that the Page Mode enabled device.

- 0 8 byte, EA[22:3] remains the same
- 1 16 byte, EA[22:4] remains the same

WAIT Data-valid feedback operation control for Flash memory, PSRAM and CellularRAM.

- O Disable data-valid feedback operation control
- 1 Enable data-valid feedback operation control

WST Write Wait State

Specifies the parameters to extend adequate setup and hold time for target component in write operation. Such parameter must be chosen carefully to meet the timing specification requirements for common parameter tWC(write cycle time) for asynchronous-write device and tCWT(chip select low to wait valid time) for synchronous-write device. An example is shown in **Figure 29** and **Table 23**.

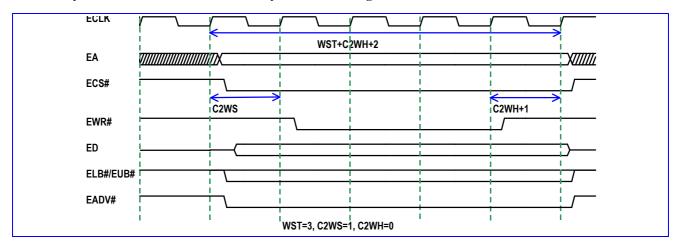


Figure 29 Write Wait State Timing Diagram for Asynchronous-Write Memory (BW=0)

Write Pulse Width (Write Data Setup Time)	Write Wait State in 104 MHz unit
65 ns ~ 70 ns	7
85 ns ~ 90 ns	9
110 ns ~ 120 ns	12

Table 23 Reference value of Write Wait State for Asynchronous-Write Devices

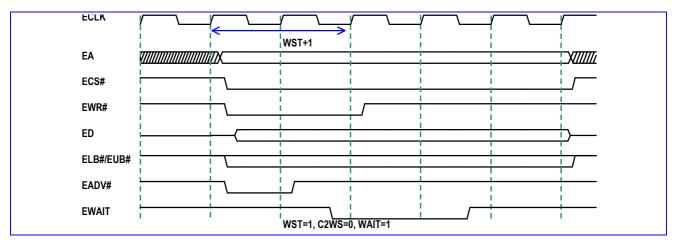


Figure 30 Write Wait State Timing Diagram for Synchronous-Write Memory (CLKEN=1 and BW=1)

ECS# Low to EWAIT Valid	Write Wait State in 104 MHz unit
0 ns ~ 10 ns	1
	87

$10~ns\sim 20~ns$	2

Table 24 Reference value of Write Wait State for Synchronous-Write Devices

BW Burst Mode Write Control

O Disable burst write operation

1 Enable burst write operation

RBLN Read Byte Lane Enable

DW Data Width

0 16 Bit

1 8 Bit

PMODE Page Mode Control

If the target device supports page mode operations, the Page Mode Control can be enabled. Read in Page Mode is determined by the set of parameters: PRLT and PSIZE.

0 disable page mode operation

1 enable page mode operation

PRLT Read Latency Time within the Same Page

Since page mode operation only helps to eliminate read latency in subsequent access within the same page, the initial latency does not matter. Thus, the memory controller must still adopt the RLT parameter for the initial read or reads between different pages, even if PMODE is set to 1.

CLKEN Clock Enable Control

C2RS Chip Select to Read Strobe Setup Time

C2WH Chip Select to Write Strobe Hold Time

C2WS Chip Select to Write Strobe Setup Time

EMI+0040h EMI Control Register 0 for MobileRAM

EMI CONI

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							PAUS E_EN	PING PONG _EN	DRAM	_MOD	DRAM	_SIZE	DRAM _EN		DRAN	_cs
Туре							R/W	R/W	R/W		R/	W	R/W		R/\	Ν
Reset							0	0	2d		()	0		0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		BA1	BA0	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0
Туре		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

A12-A0 Mode Register Configuration

BA1-B0 Mode Register Configuration

DRAM_CS MobileRAM Controller Chip Select Signal Control

00 Chip Select 0 is used for MobileRAM

01 Chip Select 1 is used for MobileRAM

10 Chip Select 2 is used for MobileRAM

DRAM EN MobileRAM Controller Control

MobileRAM controller is disabled

1 MobileRAM controller is enabled

DRAM_SIZE MobileRAM Chip Size

00 64Mbit

01 128Mbit

10 256Mbit

11 512Mbit

DRAM_MODE MobileRAM Scrambling Table Control

00 Mode 1

01 Mode 2

10 Mode 3 (PASR is not allowed)

11 Mode 4 (PASR is not allowed)

PINGPONG_EN Ping-pong Operation Control

PAUSE_ENSelf-Refresh Mode Control when Baseband is in Pause Mode Operation

EMI+0048h EMI Control Register 1 for MobileRAM

EMI_CONJ

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							PDNS	SRFS								
Type							R	R								
Reset							0	0								
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							PDN	SRF						SETM	AREF	PCA
Туре							R/W	R/W						R/W	R/W	R/W
Reset							0	0						0	0	0

PCA Pre-Charge All Command

AREF Auto-Refresh Command

SETM Set Mode Register Command

SRF Self-Refresh Mode Command

PDN Power-Down Mode Command

SRFS Self-Refresh Mode Status

PDNS Power Down Mode Status

EMI+0050h EMI Control Register 2 for MobileRAM

EMI_CONK

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	W	R							RAS_	MAX						
Type	R/	W							R/۱	Ν						
Reset	C)							0							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		RAS	MIN		RF	RD		R	C		R	P	RO	D		CAS
Type	R/W				R/	W		R/	W		R/	W	R/	W		R/W
Reset	0				()		()	•)	()		0

CAS CAS Latency Control

 $\mathbf{0}$ CAS Latency = 2

1 CAS Latency = 3

RCD Active to Read or Write Delay

RP Pre-charge Command Period

RC Active Bank A to Active Bank A Period

RRD Active Bank A to Active Bank B Delay

RAS_MIN Minimum Active to Pre-charge Command Delay

RAS_MAX Maximum Active to Pre-charge Command Delay

WR Write Recovery Time

EMI+0058h EMI Control Register 3 for MobileRAM

EMI_CONL

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	ARFE N				HYE							REFCN	т		DI	V
Туре	R/W				R/W							R/W			R/	W
Reset	0				0							0			()
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		ISR MRD								XS	SR			RF	C	
Type		R/W R/W								R/	W			R۸	Ν	

Reset	0	0	0	0

RFC Auto Refresh Period

XSR Exit Self Refresh to Active Command Delay

MRD Load Mode Register Command Period

ISR Minimum Period for Self-Refresh Mode

MobileRAM Refresh Period Pre-Divider in units of 32 KHz; this field defines the MobileRAM Refresh

00 Divide by 1 (32KHz)

01 Divide by 2 (32KHz/2)

10 Divide by 3 (32KHz/3)

11 Divide by 4 (32KHz/4)

REFCNT Number of Auto-Refresh-Command to issue per MobileRAM Refresh Period.

HYE Reserved

ARFEN Auto Refresh Control

EMI+0060h EMI Re-map Control Register

EMI_REMAP

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name															RM1	RM0
Type															R/W	R/W
Reset															0	0

This register accomplishes the Memory Re-mapping Mechanism. The register provides the kernel software program or system designer with the capability to change memory configuration dynamically. Three kinds of configuration are permitted.

RM[1:0] Re-mapping control for Boot Code, BANK0 and BANK1, refer to **Table 25**.

RM[1:0]	Address 0000_0000h - 07ff_ffffh	Address 0800_0000h – 0fff_ffffh
00	Boot Code	BANK1
01	BANK1	BANK0
10	BANK0	BANK1
11	BANk1	BANK0

Table 25 Memory Map Configuration

EMI+0068h EMI General Control Register 0

EMI_GENA

Bit	31	30	29	28	27	26	25	24	23	22	21 20 19 18 17 16					
Name	CKE	EXT_G	SUARD	DCKS R	DCKE 2	DCKE 4	DCKE 8		DCKE		DCKDLY					
Type	R/W	R/	W	R/W	R/W	R/W	R/W		R/W		RW					
Reset	0	()	0	0	0	0		0		0					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	EDA	PDNE	WPOL	SCKS R	SCKE 2	SCKE 4	SCKE 4		SCKE		SCKDLY					
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W		R/W		RW					
Reset	1	0	0	0	0	0	0		0		0					

SCKDLY FLASH, SRAM, PSRAM and CellularRAM Clock Delay Control

SCKE FLASH, SRAM, PSRAM and CellularRAM Clock Enable Control

SCKEn FLASH, SRAM, PSRAM and CellularRAM Clock Pad Driving Control (n=2, 4, 8, 16)

SCKSRFLASH, SRAM, PSRAM and CellularRAM Pad Slew-Rate Control

WPOL FLASH, SRAM, PSRAM and CellularRAM Wait Signal Inversion Control

PDNE PSRAM Power Down Control

EDA Data Bus Active Drive Control

DCKDLY MobileRAM Clock Delay Control

DCKE MobileRAM Clock Enable Control

DCKEn MobileRAM Clock Pad Driving Control (n=2, 4, 8)

DCKSRMobileRAM Clock Pad Slew-Rate Control

EXT_GUARD Extra IDLE Time for FLASH, SRAM, PSRAM and CellularRAM

CKE Dynamic MobileRAM Clock Enable Control

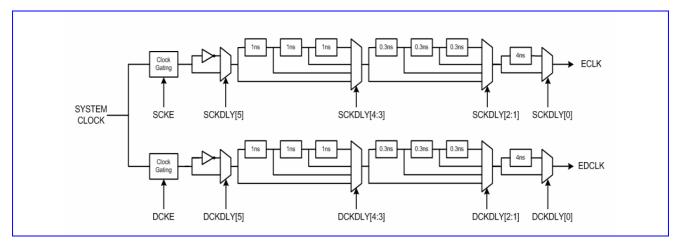


Figure 31 Clock Delay Control

EMI+0070h EMI General Control Register 1

EMI_GENB

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		EASR	EAE2	EAE4	EAE8		EDSR	EDE2	EDE4	EDE8		ECSS R	ECSE 2	ECSE 4	ECSE 8	
Type		R/W	R/W	R/W	R/W		R/W	R/W	R/W	R/W		R/W	R/W	R/W	R/W	
Reset		1	1	0	0		1	1	0	0		1	1	0	0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		ERWS R	ERWE 2	ERWE 4	ERWE 8		EADV SR	EADV E2	EADV E4	EADV E8		ERCS R	ERCE 2	ERCE 4	ERCE 8	
Type		R/W	R/W	R/W	R/W		R/W	R/W	R/W	R/W		R/W	R/W	R/W	R/W	
Reset		1	1	0	0		1	1	0	0		1	1	0	0	

ERCEn RAS and CAS Pad Driving Control (n=2, 4, 8)

ERCSR RAS and CAS Pad Slew-Rate Control

EADVEn EADV Pad Driving Control (n=2, 4, 8)

EADVSR EADV Pad Slew-Rate Control

ERWEnERD, EWR, EUB and ELB Pad Driving Control (n=2, 4, 8)

ERWSR ERD, EWR, EUB and ELB Pad Slew-Rate Control

ECSEn ECS[3:0] Pad Driving Control (n=2, 4, 8)

ECSSR ECS[3:0] Pad Slew-Rate Control

EDEn ED[15:0] Pad Driving Control (n=2, 4, 8)

EDSR ED[15:0] Pad Slew-Rate Control

EAEn EA[25:0] Pad Driving Control (n=2, 4, 8)

EASR EA[25:0] Pad Slew-Rate Control

EMI+0078h EMI A/D Mux Control Register

EMI ADMUX

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														A2A	DVH	MOD E
Туре														R/	W	R/W
Reset														,	1	XAD MUX

MODE A/D Mux memory I/F selection signal. The default value depends on the value of pin GPIO4 at reset.

O Non-A/D Mux Mode

1 A/D Mux Mode

A2ADVH Address Valid to Address Hold Time

4 Microcontroller Peripherals

Microcontroller (MCU) Peripherals are devices that are under direct control of the Microcontroller. Most of the devices are attached to the Advanced Peripheral Bus (APB) of the MCU subsystem, and serve as APB slaves. Each MCU peripheral must be accessed as a memory-mapped I/O device; that is, the MCU or the DMA bus master reads from or writes to the specific peripheral by issuing memory-addressed transactions.

4.1 Security Engine

4.1.1 General Description

The Secure Engine module is responsible for security functions in the MT6227. SE realizes an efficient scheme to protect the program in non-volatile memory. Applying the flows in the IC with Chip-ID can: a) encrypted codes to protect the codes to be cracked (Confidentiality); b) guarantee the integrity; c) Copyright protection.

To protect the program in the novo memory, SE references 1: Chip UID; 2: custom seed; 3: Internal reproducible noise to enlarge the entropy space of ciphering. After proper configuration in BCON and BSEED, users can encrypt program plaintext into cipher-texts and store them onto NoVo memory. Due to the program are stored in ciphered mode, it's not easy to be disassembled. Further, the encryption process has referred to Chip UID, which may be different between two different chips, the cipher-text encrypted referred to Chip UIDA is very likely decrypted to wrong one referred to other IDs.

4.1.2 Register Definitions

Figure 32: SE Registers

Register Address	Register Function	Acronym
SE + 00c0h	SE Secure Booting control	SE_BCON
SE + 00c4h	SE Secure Booting source data	SE_BSRC
SE + 00c8h	SE Secure Booting seed data	SE_BSEED
SE + 00cch	SE Secure Booting encrypted data	SE_BENC
SE + 00d0h	SE Secure Booting decrypted data	SE_BDEC

SE+00c0h SE Secure Booting control

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name													PAR3	PAR2	PAR1	DIS
Type													R/W	R/W	R/W	R/W
Reset													0	0	0	0

DIS Disable Secure Booting function. When DIS is asserted, the data read from SE_BENC and SE_BDEC is the same as SE_BSRC.

PAR1 Use inner information parameter 1 (SK) to strengthen security.

PAR2 Use inner information parameter 2 (RS) to strengthen security.

PAR3 Use inner information parameter 3 (MR) to strengthen security.

SE+00c4h SE Secure Booting source data

SE_BSRC

SE BCON

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								BSRC	[31:16]							
Type								W	0							
Reset								()							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Туре	WO
Reset	0

BSRC Source data for Secure Booting to be encrypted (obtained from SE_BENC) or decrypted (obtained from SE_BDEC).

SE+00c8h SE Secure Booting seed value

SE BSEED

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name			-					BSEED	[31:16]		_					-
Type								W	0							
Reset								()							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								BSEED	D[15:0]							
Type								W	0							
Reset								()							

BSEED Seed data needed to increase security of the Boot Secure function. Set the seed value before performing Boot Secure the first time.

SE+00cch SE Secure Booting encrypted data

SE BENC

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								BENC	31:16]							
Type	RO															
Reset								()							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								BENC	[15:0]							
Туре								R	Ō							
Reset		•		•	•		•	()	•		•		•		_

BENC Encrypted data from SE_BSRC.

SE+00d0h SE Secure Booting decrypted data

SE_BDEC

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								BDEC	[31:16]							
Type								R	0							
Reset								()							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								BDEC	[15:0]							
Type								R	0							
Reset								()							

BDEC Decrypted data from SE_BSRC.

4.1.3 Secure Booting Procedure

Secure Booting is the major feature of SE that protects the program contents on flash memory from modification, skip or hard copy. With a secure process and a unique chip ID (UID), SE can encrypt or decrypt a segment of instruction data in order.

Encryption procedure:

- 1. Activate the eFuse module.
- 2. Write the seed value into BSEED. The seed value can be any 32-bit value. The same seed value is necessary in the decryption procedure.
- 3. Write the control value into BCON.
- 4. Write source data (instruction) into BSRC and read the cipher text from BENC.
- 5. Repeat step 4 until all instructions are encrypted.

Decryption procedure:

- 1. Activate the eFuse module.
- 2. Write the seed value into BSEED. The seed value must be the same one used in the encryption procedure.
- 3. Write the control value into BCON. The control value must be the same one used in the encryption procedure.
- 4. Write the source data (instruction) into BSRC and read the plain text from BDEC.
- 5. Repeat step 4 until all instructions are decrypted.

Notes:

- 1. A bit length equal or less than 32 bits is acceptable for Secure Boot. E.g.: a 16-bit data 0x1234 is treated as 0x12340000 32-bit data and decrypted in the same manner.
- 2. For security reasons, access times to be encrypted or decrypted should not be the multiples of 4.
- 3. The internal states of Secure Booting function change under the following conditions, such that redundant register access is forbidden.
 - Write data into BSRC
 - Write data into BSEED
 - Read data from BENC or BDEC

As an example of the encryption and decryption of 16-bit data, consider the value 0xabcd:

Encryption:

- 1. The data is padded with zeros to obtain a 32-bit value: 0xabcd0000.
- 2. The encryption operation produces a value 0x12345678.

Decryption:

- 1. Only the most significant 16 bits 0x1234000 are considered and decrypted as 0xabcd7893.
 - 2. The first 16 bits 0xabcd are retained, and 0x00007893 is ignored.

4.2 OTP Controller (OTPC)

4.2.1 General Description

There is 192-bit non-volatile memories consisted of OTPs in MT6225. OTP is one-time-programming non-volatile memory in CMOS. Some regions of these memories can be programmed by customers.

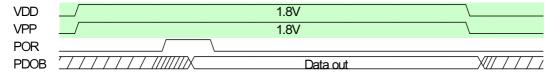


Figure 33 OTP initialization procedure

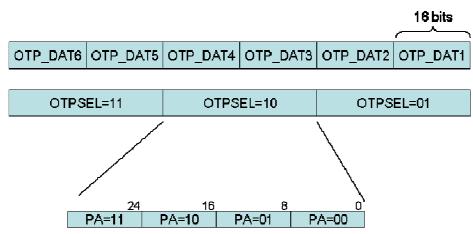


Figure 34 Programmable OTPs organization.

4.2.2 Register Definitions

CONFG+f000h OTP control 1

OTP_CON1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							SPD			OTP	SEL	PGM	WR	RES	BUSY	VLD
Type							R/	W		R/	W	R/W	WO	WO	RO	RO
Reset							0	0		0	0	0	0	0	0	0

VLD Indicate if OTP_DATx is valid or not. OTPC will generate a POR to initialize OTPs. After the initialization finished, this bit will change to 1 from initial 0. In other case, if you initialize OTPs by RD manually, the VLD will go to low. After RD process done, VLD will go to high again.

- OTP DATx content is unknown.
- 1 OTP_DATx content is valid.

BUSY OTP controller is busy. You should program OTPC only when BUSY is low.

RES Reserved bit. Always write this bit 0 when you program OTP_CON1.

WR Write strobe to program OTPs based on PA and PDIN when PGM is high.

PGM OTP Programming mode.

OTPSEL OTP selection.

- **00** No OTP is selected.
- 01 OTP_DAT2 and OTP_DAT1 is selected
- 10 OTP DAT4 and OTP DAT3 is selected
- 11 OTP DAT6 and OTP DAT5 is selected

SPD OTPC speed selection. Change this field depends on the system bus speed.

- **00** OTPC operates at system bus frequency equal to 13MHz
- **01** OTPC operates at system bus frequency equal to 26MHz
- 10 OTPC operates at system bus frequency equal to 39MHz
- 11 OTPC operates at system bus frequency equal to 52MHz

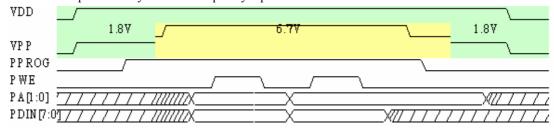
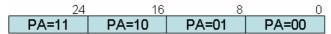


Figure 35 OTP programming waveform

About programming mode:

If you'd like to program OTPs with desired data, you should obey the following procedures:


- 1. Set VPP to 1.8V
- 2. write PGM=1 to enter programming mode and wait until busy bit low.
- 3. set VPP to 6.7V. With correct setting (output mode, VPP mode. Please consult the GPIO section for more information), GPIO35 is indicated for the VPP status. When GPIO35 output from 0 to , VPP should be feed 6.7V from original 1.8V.
- 4. set OTPSEL, PA, PDIN properly to assign which OTP parts you want to write. You can refer to figure 2 to get to OTP organization.
- 5. write WR to 1 and wait until busy bit low.
- 6. if you want to program other bits, repeat step 4&5
- 7. set VPP to 1.8V
- 8. write PGM=0 to leave programming mode and wait until busy bit low

CONFG+f004h OTP control 2

OTP_CON2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				PC	IN								P	Α		
Type				R/	W							R/	W			
Reset				()										()

PA Program address.

PDIN Program data. The data to be programmed. OTP controller program OTPs 8 bits each time and the initial bits are all 1. Any bits can be write to 0 and not back to 1.

CONFG+f030h OTP DATA1

OTP_DAT1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								OTP_	DAT1							
Type		W*/R														
Reset								0xf	fff							

CONFG+f034h OTP DATA2

OTP_DAT2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	WEN1 2							01	P_DA	Γ2						
Type	W*/R								W*/R							
Reset	1								0x7fff							

CONFG+f038h OTP DATA3

OTP_DAT3

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								OTP_	DAT3							
Type								W*	/R							
Reset								0x	ffff							

CONFG+f03ch OTP DATA4

OTP DAT4

Bit	15	14	1	13	12	11	10	9	8		7		6	5	4	3	2	1	0
Name	WEN3 4								C	TP	_DA	\T4	ļ						
Type	W*/R									٧	V*/R								
Reset	1	•								0	x7fff	:						,	

CONFG+f040h OTP DATA5

OTP DAT5

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								OTP_	DAT5							
Type								W*	/R							
Reset								0xt	ffff							

CONFG+f044h OTP DATA6

OTP_DAT6

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	WEN5 6							01	P_DA1	Γ6						
Type	W*/R								W*/R							
Reset	1								0x7fff							

(*)Note: The bit can be write once, from 1 to 0, and from 0 to 1 is forbid.

WEN12 Write enable of OTP_DAT1 and OTP_DAT2. When this bit is 1, OTP_DAT1 and OTP_DAT2 are programmable. Otherwise, they are read only.

WEN34 Write enable of OTP_DAT3 and OTP_DAT4. When this bit is 1, OTP_DAT3 and OTP_DAT4 are programmable. Otherwise, they are read only.

WEN56 Write enable of OTP_DAT5 and OTP_DAT6. When this bit is 1, OTP_DAT5 and OTP_DAT6 are programmable. Otherwise, they are read only.

4.3 Pulse-Width Modulation Outputs

4.3.1 General Description

Two generic pulse-width modulators are implemented to generate pulse sequences with programmable frequency and duty cycle for LCD backlight or charging purpose. The duration of the PWM output signal is Low as long as the internal counter value is greater than or equal to the threshold value. The waveform is shown in **Figure 36**.

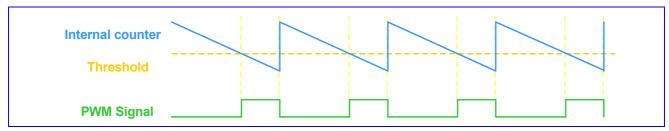


Figure 36 PWM waveform

The frequency and volume of PWM output signal are determined by these registers: PWM_COUNT, PWM_THRES, PWM_CON. POWERDOWN (pdn_pwm) signal is applied to power-down the PWM module. When PWM is deactivated (POWERDOWN=1), the output will be in Low state.

The output PWM frequency is determined

by:
$$\frac{CLK}{CLOCK_DIV \times (PWM_COUNT+1)}$$
 CLK = 13000000 when CLKSEL = 0, CLK = 32000 when CLKSEL = 1

CLOCK DIV = 1, when CLK[1:0] = 00b

CLOCK DIV = 2, when CLK[1:0] = 01b

CLOCK DIV = 4, when CLK[1:0] = 10b

 $CLOCK_DIV = 8$, when CLK[1:0] = 11b

The output PWM duty cycle is determined by: $\frac{PWM_THRES}{PWM_COUNT+1}$

Note that PWM_THRES should be less than the PWM_COUNT. If this condition is not satisfied, the output pulse of the PWM will always be in High state.

4.3.2 Register Definitions

PWM+0000h PWM1 Control register

PWM1_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														CLKS EL	CLK	[1:0]
Type														R/W	R/	W
Reset														0	()

CLK Select PWM1 clock prescaler scale

00 CLK Hz

01 CLK/2 Hz

10 CLK/4 Hz

11 CLK/8 Hz

Note: When PWM1 module is disabled, its output should be kept in LOW state.

CLKSEL Select PWM1 clock

O CLK=13M Hz

1 CLK=32K Hz

PWM+0004h PWM1 max counter value register

PWM1_COUNT

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									PWM1_	COUN.	T [12:0					
Type										R/W						
Reset										1FFFh						

PWM1_COUNT PWM1 max counter value. It will be the initial value for the internal counter. If PWM1_COUNT is written when the internal counter is counting backwards, no matter which mode it is, there is no effect until the internal counter counts down to zero, i.e. a complete period.

PWM+0008h PWM1 Threshold Value register

PWM1_THRES

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Name					PWM1_THRES [12:0]													
Type										R/W								
Reset										0								

PWM1_THRES Threshold value. When the internal counter value is greater than or equals to PWM1_THRES, the PWM1 output signal will be "0"; when the internal counter is less than PWM1_THRES, the PWM1 output signal will be "1".

PWM+000Ch PWM2 Control register

PWM2_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														CLKS EL	CLK	[1:0]
Type														R/W	R/	W
Reset														0	()

CLK Select PWM2 clock prescaler scale

00 CLK Hz

01 CLK/2 Hz

10 CLK/4 Hz

11 CLK/8 Hz

Note: When PWM2 module is disabled, its output should be keep in LOW state.

CLKSEL Select PWM2 clock

CLK=13M HzCLK=32K Hz

PWM+0010h PWM2 max counter value register

PWM2 COUNT

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Name					PWM2_COUNT [12:0]													
Type										R/W								
Reset										1FFFh								

PWM2_COUNT PWM2 max counter value. It will be the initial value for the internal counter. If PWM2_COUNT is written when the internal counter is counting backwards, no matter which mode it is, there is no effect until the internal counter counts down to zero, i.e. a complete period.

PWM+0014h PWM2 Threshold Value register

PWM2_THRES

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									PWM2_	THRE	S [12:0]					
Type										R/W						
Reset										0						

PWM2_THRES Threshold value. When the internal counter value is greater than or equals to PWM2_THRES, the PWM1 output signal will be "0"; when the internal counter is less than PWM2_THRES, the PWM2 output signal will be "1".

Figure 37 shows the PWM waveform with register value present.

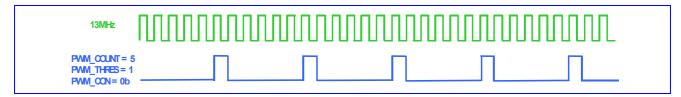


Figure 37 PWM waveform with register value present

4.4 Alerter

4.4.1 General Description

The output of Alerter has two sources: one is the enhanced pwm output signal, which is implemented embedded in Alerter module; the other is PDM signal from DSP domain directly. The enhanced pwm with three operation modes is implemented to generate a signal with programmable frequency and tone volume. The frequency and volume are determined by four registers: ALERTER_CNT1, ALERTER_THRES, ALERTER_CNT2 and ALERTER_CON. ALERTER_CNT1 and ALERTER_CNT2 are the initial counting values of internal counter1 and internal counter2 respectively. POWERDOWN signal is applied to power-down the Alerter module. When Alerter is deactivated (POWERDOWN=1), the output will be in low state.

With ALERTER_CON, the output source can be chosen from enhanced pwm or PDM. The waveform of the alerter from enhanced pwm source in different modes can be shown in **Figure 38**. In mode 1, the polarity of alerter output signal according to the relationship between internal counter1 and the programmed threshold will be inverted each time internal counter2 reaches zero. In mode2, each time the internal counter2 count backwards to zero the alerter output

signal is normal pwm signal (i.e. signal is low as long as the internal counter1 value is greater than or equals to ALERTER_THRES, and it is high when the internal counter1 is less than ALERTER_THRES) or low state by turns. In mode3, the value of internal counter2 has no effect on output signal, i.e. the alerter output signal is low as long as the internal counter1 value is above the programmed threshold and is high the internal counter1 is less than ALERTER_THRES when no matter what value the internal counter2 is.

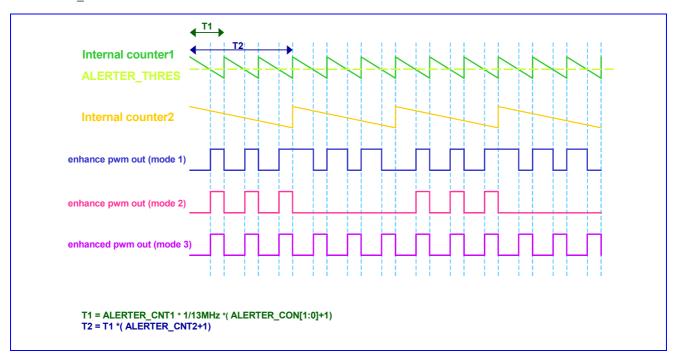


Figure 38 Alerter waveform

The output signal frequency is determined by:

$$\begin{cases} \frac{13000000}{2 \times (ALERTER_CON[1:0]+1) \times (ALERTER_CNT1+1) \times (ALERTER_CNT2+1)} & \text{for mode 1 and mode 2} \\ \frac{13000000}{(ALERTER_CNT1+1) \times (ALERTER_CON[1:0])} & \text{for mode 3} \end{cases}$$

The volume of the output signal is determined by: $\frac{ALERTER_THRES}{ALERTER_CNT1+1}$

4.4.2 Register Definitions

ALTER+0000h Alerter counter1 value register

ALERTER_CNT

1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		ALERTER_CNT1 [15:0] R/W														
Type								R/	W							
Reset								FFF	Fh							

ALERTER_CNT1 Alerter max counter's value. ALERTER_CNT1 is the initial value of internal counter1. If ALERTER_CNT1 is written when the internal counter1 is counting backwards, no matter which mode it is, there is no effect until the internal counter1 counts down to zero, i.e. a complete period.

ALTER+0004h Alerter threshold value register

ALERTER_THR

ES

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0																	
	Bit	15	14	1 1 3	12	11	10	9	8	7	6	5	4	3	2	1	0

Name	ALERTER_THRES [15:0]
Type	R/W
Reset	0

ALERTER_THRES Threshold value. When the internal counter1 value is greater than or equals to ALERTER_THRES, the Alerter output signal will be low state; when the counter1 is less than ALERTER THRES, the Alerter output signal will be high state.

ALTER+0008h Alerter counter2 value register

ALERTER_CNT

2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												ALE	RTER_	CNT2	5:0]	
Type													R/	W		
Reset													1111	111b		

ALERTER_CNT2 is the initial value for internal counter2. The internal counter2 decreases by one everytime the internal counter1 count down to be zero. The polarity of alerter output signal which depends on the relationship between the internal counter1 and ALERTER_THRES will be inverted anytime when the internal counter2 counts down to zero. E.g. in the beginning, the output signal is low when the internal counter1 isn't less ALERTER_THRES and is high when the internal counter1 is less than ALERTER_THRES. But after the internal counter2 counts down to zero, the output signal will be high when the internal counter1 isn't less than ALERTER_THRES and will be low when the internal counter1 is less than ALERTER_THRES.

ALTER+000Ch Alerter control register

ALERTER_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								TYPE				MO	DE		CLK	[1:0]
Type								R/W				R/	W		R/	W
Reset								0				()		()

CLK Select PWM Waveform clock

00 13M Hz

01 13/2M Hz

10 13/4M Hz

11 13/8M Hz

MODE Select Alerter mode

00 Mode 1 selected

01 Mode 2 selected

10 Mode 3 selected

TYPE Select the ALERTER output source from PWM or PDM

Output generated from PWM path

1 Output generated from PDM path

Note: When alerter module is power down, its output should be kept in low state.

Figure 39 shows the Alerter waveform with register value present.

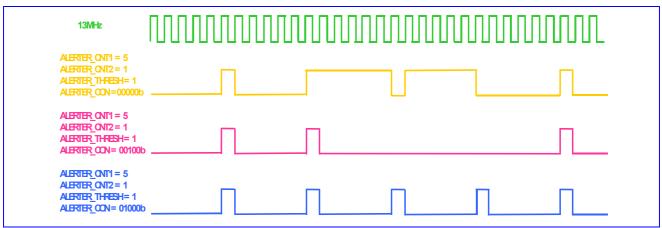


Figure 39 Alerter output signal from enhanced pwm with register value present.

4.5 SIM Interface

The MT6225 contains a dedicated smart card interface to allow the MCU access to the SIM card. It can operate via 5 terminals, using SIMVCC, SIMSEL, SIMRST, SIMCLK and SIMDATA.

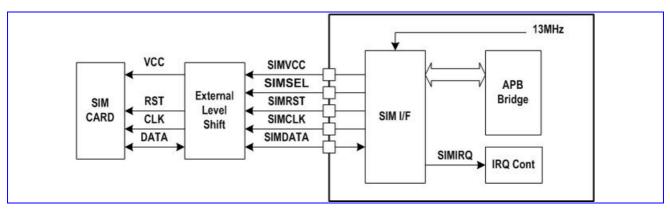


Figure 40 SIM Interface Block Diagram

The SIMVCC is used to control the external voltage supply to the SIM card and SIMSEL determines the regulated smart card supply voltage. SIMRST is used as the SIM card reset signal. Besides, SIMDATA and SIMCLK are used for data exchange purpose.

Basically, the SIM interface acts as a half duplex asynchronous communication port and its data format is composed of ten consecutive bits: a start bit in state Low, eight information bits, and a tenth bit used for parity checking. The data format can be divided into two modes as follows:

Direct Mode (ODD=SDIR=SINV=0)

SB D0 D1 D2 D3 D4 D5 D6 D7 PB

SB: Start Bit (in state Low)

Dx: Data Byte (LSB is first and logic level ONE is High)

PB: Even Parity Check Bit

Indirect Mode (ODD=SDIR=SINV=1)

SB N7 N6 N5 N4 N3 N2 N1 N0 PB

SB: Start Bit (in state Low)

Nx: Data Byte (MSB is first and logic level ONE is Low)

PB: Odd Parity Check Bit

If the receiver gets a wrong parity bit, it will respond by pulling the SIMDATA Low to inform the transmitter and the transmitter will retransmit the character.

When the receiver is a SIM Card, the error response starts 0.5 bits after the PB and it may last for 1~2 bit periods.

When the receiver is the SIM interface, the error response starts 0.5 bits after the PB and lasts for 1.5 bit period.

When the SIM interface is the transmitter, it will take totally 14 bits guard period whether the error response appears. If the receiver shows the error response, the SIM interface will retransmit the previous character again else it will transmit the next character.

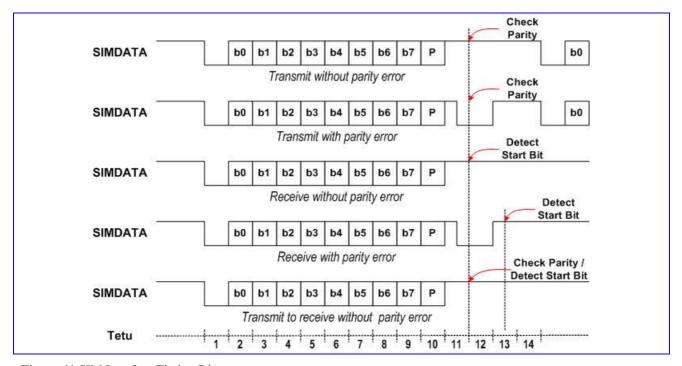


Figure 41 SIM Interface Timing Diagram

4.5.1 Register Definitions

SIM+0000h SIM module control register

SIM_CONT

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														WRST	CSTO P	SIMO N
Type														W	R/W	R/W
Reset														0	0	0

SIMON SIM card power-up/power-down control

- Initiate the card deactivation sequence
- 1 Initiate the card activation sequence

CSTOP Enable clock stop mode. Together with CPOL in SIM_CNF register, it determines the polarity of the SIMCLK in this mode.

- Enable the SIMCLK output.
- 1 Disable the SIMCLK output

WRST SIM card warm reset control

SIM+0004h SIM module configuration register

SIM_CONF

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						HFEN	T0EN	T1EN	TOUT	SIMS	ODD	SDIR	SINV	CPOL	TXAC	RXAC K
Туре						R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset						0	0	0	0	0	0	0	0	0	0	0

RXACKSIM card reception error handshake control

- O Disable character receipt handshaking
- 1 Enable character receipt handshaking

TXACK SIM card transmission error handshake control

- O Disable character transmission handshaking
- 1 Enable character transmission handshaking

CPOL SIMCLK polarity control in clock stop mode

- Make SIMCLK stop in LOW level
- 1 Make SIMCLK stop in HIGH level

SINV Data Inverter.

- Not invert the transmitted and received data
- 1 Invert the transmitted and received data

SDIR Data Transfer Direction

- 0 LSB is transmitted and received first
- 1 MSB is transmitted and received first

ODD Select odd or even parity

- Even parity
- 1 Odd parity

SIMSEL SIM card supply voltage select

- O SIMSEL pin is set to LOW level
- 1 SIMSEL pin is set to HIGH level

TOUT SIM work waiting time counter control

- O Disable Time-Out counter
- 1 Enable Time-Out counter

T1EN T=1 protocol controller control

- O Disable T=1 protocol controller
- 1 Enable T=1 protocol controller

T0EN T=0 protocol controller control

- O Disable T=0 protocol controller
- 1 Enable T=0 protocol controller

HFEN Hardware flow control

- Disable hardware flow control
- 1 Enable hardware flow control

SIM +0008h SIM Baud Rate Register

SIM_BRR

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									E	TU[8:0)]				SIMCL	.K[1:0]
Type										R/W					R/	W
Reset										372d					0	1

SIMCLK Set SIMCLK frequency

00 13/2 MHz

01 13/4 MHz

10 13/8 MHz

11 13/32 MHz

ETU Determines the duration of elementary time unit in unit of SIMCLK

SIM +0010h SIM interrupt enable register

SIM IRQEN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						EDCE RR	T1EN D	RXER R	T0EN D	SIMO FF	ATRER R	TXER R	TOU T	OVRU N	RXTID E	TXTID E
Туре						R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset						0	0	0	0	0	0	0	0	0	0	0

For all these bits

Interrupt is disabled

1 Interrupt is enabled

SIM +0014h SIM module status register

SIM_STS

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						EDCE RR	T1EN D	RXER R	T0EN D	SIMO FF	ATRER R	TXER R	TOU T	OVRU N	RXTID E	TXTID E
Туре						R/C	R/C	R/C	R/C	R/C	R/C	R/C	R/C	R/C	R	R
Reset						_	_	_	_	_	_	_	_	_	_	_

TXTIDETransmit FIFO tide mark reached interrupt occurred

RXTIDE Receive FIFO tide mark reached interrupt occurred

OVRUN Transmit/Receive FIFO overrun interrupt occurred

TOUT Between character timeout interrupt occurred

TXERR Character transmission error interrupt occurred

ATRERR ATR start time-out interrupt occurred

SIMOFF Card deactivation complete interrupt occurred

TOEND Data Transfer handled by T=0 Controller completed interrupt occurred

RXERR Character reception error interrupt occurred

T1END Data Transfer handled by T=1 Controller completed interrupt occurred

EDCERR T=1 Controller CRC error occurred

SIM +0020h SIM retry limit register

SIM_RETRY

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						T	XRETR	Y						R	XRETR	Y
Type							R/W								R/W	
Reset							3h								3h	

RXRETRY Specify the max. numbers of receive retries that are allowed when parity error has occurred.

TXRETRY Specify the max. numbers of transmit retries that are allowed when parity error has occurred.

SIM +0024h SIM FIFO tide mark register

SIM TIDE

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						TXTID	E[3:0]							RXTID	E[3:0]	
Type						R/	W							R/	W	
Reset						0	h							0	h	

RXTIDE Trigger point for RXTIDE interrupt

TXTIDETrigger point for TXTIDE interrupt

SIM +0030h Data register used as Tx/Rx Data Register

SIM DATA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												DATA	\[7:0]			

Туре					R/W
Reset					_

DATA Eight data digits. These correspond to the character being read or written

SIM +0034h SIM FIFO count register

SIM_COUNT

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name												COUNT[4:0]					
Type												R/W					
Reset	•													0h	•		

COUNTThe number of characters in the SIM FIFO when read, and flushes when written.

SIM +0040h SIM activation time register

SIM_ATIME

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								ATIME	[15:0]							
Type		7.1														
Reset								AF(C7h							

ATIME The register defines the duration, in SIM clock cycles, of the time taken for each of the three stages of the card activation process

SIM +0044h SIM deactivation time register

SIM_DTIME

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					DTIME[11:0]											
Type										R/	W					
Reset										3E	7h					

DTIME The register defines the duration, in 13MHz clock cycles, of the time taken for each of the three stages of the card deactivation sequence

SIM +0048h Character to character waiting time register

SIM WTIME

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								WTIME	[15:0]							
Type								R/	W							
Reset								98	3h							

WTIME Maximum interval between the leading edge of two consecutive characters in 4 ETU unit

SIM +004Ch Block to block guard time register

SIM_GTIME

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name													GTIME			
Type													R/W			
Reset													R/W 10d			

GTIME Minimum interval between the leading edge of two consecutive characters sent in opposite directions in ETU unit

SIM +0050h Block to error signal time register

SIM_ETIME

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Name												ETIME						
Type												ETIME R/W						
Reset														ETIME				

ETIME The register defines the interval, in 1/16 ETU unit, between the end of transmitted parity bit and time to check parity error signal sent from SIM card.

SIM +0060h SIM command header register: INS

SIM INS

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Name								INSD										
Type								R/W										
Reset								0h				0	h					

SIMINS This field should be identical to the INS instruction code. When writing to this register, the T=0 controller will be activated and data transfer will be initiated.

INSD [Description for this register field]

- T=0 controller receives data from the SIM card
- 1 T=0 controller sends data to the SIM card

SIM +0064h SIM command header register: P3

SIM_P3

(ICC LEN)

															_	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											SI	MP3[8:	0]			
Type												R/W				
Docot												Λh				

SIMP3 This field should be identical to the P3 instruction code. It should be written prior to the SIM_INS register. While the data transfer is going on, this field shows the no. of the remaining data to be sent or to be received

SIM +0068h SIM procedure byte register: SW1

SIM_SW1

(ICC_LEN)

		_	_	_			_	_			_			_	_	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												SIMSW	/1[7:0]			
Type												F	₹			
Reset												0	h			

SIMSW1 This field holds the last received procedure byte for debug purpose. When the T0END interrupt occurred, it keeps the SW1 procedure byte.

SIM +006Ch SIM procedure byte register: SW2

SIM_SW2

(ICC_EDC)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												SIMSV	V2[7:0]			
Type												F	₹			
Reset												0	h		•	

SIMSW2 This field holds the SW2 procedure byte

4.5.2 SIM Card Insertion and Removal

The detection of physical connection to the SIM card and card removal is done by the external interrupt controller or by GPIO.

4.5.3 Card Activation and Deactivation

The card activation and deactivation sequence both are controlled by H/W. The MCU initiates the activation sequence by writing a "1" to bit 0 of the SIM_CON register, and then the interface performs the following activation sequence:

- Assert SIMRST LOW
- Set SIMVCC at HIGH level and SIMDATA in reception mode
- Enable SIMCLK clock
- De-assert SIMRST HIGH (required if it belongs to active low reset SIM card)

The final step in a typical card session is contact deactivation in order that the card is not electrically damaged. The deactivation sequence is initiated by writing a "0" to bit 0 of the SIM_CONT register, and then the interface performs the following deactivation sequence:

- Assert SIMRST LOW
- Set SCIMCLK at LOW level
- Set SIMDATA at LOW level
- Set SIMVCC at LOW level

4.5.4 Answer to Reset Sequence

After card activation, a reset operation results in an answer from the card consisting of the initial character TS, followed by at most 32 characters. The initial character TS provides a bit synchronization sequence and defines the conventions to interpret data bytes in all subsequent characters.

On reception of the first character, TS, MCU should read this character, establish the respective required convention and reprogram the related registers. These processes should be completed prior to the completion of reception of the next character. And then, the remainder of the ATR sequence is received, read via the SIM_DATA in the selected convention and interpreted by the S/W.

The timing requirement and procedures for ATR sequence are handled by H/W and shall meet the requirement of ISO 7816-3 as shown in **Figure 42**.

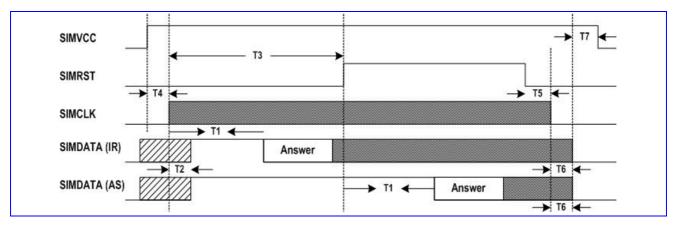


Figure 42 Answer to Reset Sequence

Time	Value	Comment
T1	> 400 SIMCLK	SIMCLK start to ATR appear
T2	< 200 SIMCLK	SIMCLK start to SIMDATA in reception mode
T3	> 40000 SIMCLK	SIMCLK start to SIMRST High
T4	_	SIMVCC High to SIMCLK start
T5	_	SIMRST Low to SIMCLK stop
T6	_	SIMCLK stop to SIMDATA Low
T7	_	SIMDATA Low to SIMVCC Low

 Table 26 Answer to Reset Sequence Time-Out Condition

4.5.5 SIM Data Transfer

Two transfer modes are provided, either in software controlled byte by byte fashion or in a block fashion using T=0 controller and DMA controller. In both modes, the time-out counter could be enabled to monitor the elapsed time between two consecutive bytes.

4.5.5.1 Byte Transfer Mode

This mode is used during ATR and PPS procedure. In this mode, the SIM interface only ensures error free character transmission and reception.

Receiving Character

Upon detection of the start-bit sent by SIM card, the interface transforms into reception mode and the following bits are shifted into an internal register. If no parity error is detected or character-receive handshaking is disabled, the received-character is written into the SIM FIFO and the SIM_COUNT register is increased by one. Otherwise, the SIMDATA line is held low at 0.5 etu after detecting the parity error for 1.5 etus, and the character is re-received. If a character fails to be received correctly for the RXRETRY times, the receive-handshaking is aborted and the last-received character is written into the SIM FIFO, the SIM_COUNT is increased by one and the RXERR interrupt is generated

When the number of characters held in the receive FIFO exceeds the level defined in the SIM_TIDE register, a RXTIDE interrupt is generated. The number of characters held in the SIM FIFO can be determined by reading the SIM_COUNT register and writing to this register will flush the SIM FIFO.

Sending Character

Characters that are to be sent to the card are first written into the SIM FIFO and then automatically transmitted to the card at timed intervals. If character-transmit handshaking is enabled, the SIMDATA line is sampled at 1 etu after the parity bit. If the card indicates that it did not receive the character correctly, the character is retransmitted a maximum of TXRETRY times before a TXERR interrupt is generated and the transmission is aborted. Otherwise, the succeeding byte in the SIM FIFO is transmitted.

If a character fails to be transmitted and a TXERR interrupt is generated, the interface needs to be reset by flushing the SIM FIFO before any subsequent transmit or receive operation.

When the number of characters held in the SIM FIFO falls below the level defined in the SIM_TIDE register, a TXTIDE interrupt is generated. The number of characters held in the SIM FIFO can be determined by reading the SIM_COUNT register and writing to this register will flush the SIM FIFO.

4.5.5.2 Block Transfer Mode

Basically, the SIM interface is designed to work in conjunction with the T=0 protocol controller and the DMA controller during non-ATR and non-PPS phase, though it is still possible for software to service the data transfer manually like in byte transfer mode if necessary and thus the T=0 protocol should be controlled by software.

The T=0 controller is accessed via four registers representing the instruction header bytes INS and P3, and the procedure bytes SW1 and SW2. These registers are:

SIM_INS, SIM_P3

SIM SW1, SIM SW2

During characters transfer, SIM_P3 holds the number of characters to be sent or to be received and SIM_SW1 holds the last received procedure byte including NULL, ACK, NACK and SW1 for debug purpose.

Data Receive Instruction

Data Receive Instructions receive data from the SIM card. It is instantiated as the following procedure.

- 1. Enable the T=0 protocol controller by setting the TOEN bit to 1 in SIM CONF register
- 2. Program the SIM TIDE register to 0x0000 (TXTIDE = 0, RXTIDE = 0)
- 3. Program the SIM IRQEN to 0x019C (Enable RXERR, TXERR, TOEND, TOUT and OVRUN interrupts)
- 4. Write CLA, INS, P1, P2 and P3 into SIM FIFO
- 5. Program the DMA controller:

```
DMAn_MSBSRC and DMAn_LSBSRC : address of SIM_DATA register DMAn_MSBDST and DMAn_LSBDST : memory address reserved to store the received characters DMAn_COUNT : identical to P3 or 256 (if P3 == 0) DMAn_CON : 0x0078
```

- 6. Write P3 into SIM_P3 register and then INS into SIM_INS register (Data Transfer is initiated now)
- 7. Enable the Time-out counter by setting the TOUT bit to 1 in SIM CONF register
- 8. Start the DMA controller by writing 0x8000 into the DMAn_START register to

Upon completion of the Data Receive Instruction, T0END interrupt will be generated and then the Time-out counter should be disabled by setting the TOUT bit back to 0 in SIM_CONF register.

If error occurs during data transfer (RXERR, TXERR, OVRUN or TOUT interrupt is generated), the SIM card should be deactivated first and then activated prior subsequent operations.

Data Send Instruction

Data Send Instructions send data to the SIM card. It is instantiated as the following procedure.

- 1. Enable the T=0 protocol controller by setting the TOEN bit to 1 in SIM CONF register
- 2. Program the SIM TIDE register to 0x0100 (TXTIDE = 1, RXTIDE = 0)
- 3. Program the SIM IRQEN to 0x019C (Enable RXERR, TXERR, T0END, TOUT and OVRUN interrupts)
- 4. Write CLA, INS, P1, P2 and P3 into SIM FIFO
- 5. Program the DMA controller:

```
DMAn_MSBSRC and DMAn_LSBSRC : memory address reserved to store the transmitted characters DMAn_MSBDST and DMAn_LSBDST : address of SIM_DATA register DMAn_COUNT : identical to P3 DMAn_CON : 0 \times 0074
```

- 6. Write P3 into SIM_P3 register and then $(0 \times 0100 \mid INS)$ into SIM_INS register (Data Transfer is initiated now)
- 7. Enable the Time-out counter by setting the TOUT bit to 1 in SIM CONF register
- 8. Start the DMA controller by writing 0x8000 into the DMAn START register

Upon completion of the Data Send Instruction, T0END interrupt will be generated and then the Time-out counter should be disabled by setting the TOUT bit back to 0 in SIM_CONF register.

If error occurs during data transfer (RXERR, TXERR, OVRUN or TOUT interrupt is generated), the SIM card should be deactivated first and then activated prior subsequent operations.

4.6 Keypad Scanner

4.6.1 General Description

The keypad can be divided into two parts: one is the keypad interface including 7 columns and 6 rows; the other is the key detection block which provides key pressed, key released and de-bounce mechanism. Each time the key is pressed or released, i.e. something different in the 7 x 6 matrix, the key detection block will sense it, and it will start to recognize if it is a key pressed or key released event. Whenever the key status changes and is stable, a KEYPAD IRQ will be issued. The MCU can then read the key(s) pressed directly in KP_HI_KEY, KP_MID_KEY and KP LOW KEY registers. To ensure that the key pressed information will not be missed, the status register in keypad

will not be read clear by APB bus read command. The status register can only be changed by the key-pressed detection FSM. This keypad can detect one or two key-pressed simultaneously with any combination. **Figure 43** shows one key pressed condition. **Figure 44**(a) and **Figure 44**(b) indicate two keys pressed cases. Since the key press detection depends on the high or low level of the external keypad interface, if keys are pressed at the same time and there exists a key that is on the same column and the same row with the other keys, it will not be able to decode the correct key pressed. For example, if there are three key presses: key1 = (x1, y1), key2 = (x2, y2), and key3 = (x1, y2), then both key3 and key4 = (x2, y1) will be detected, and therefore it will not possible to distinguish correctly. Hence, the keypad can detect only one or two keys pressed simultaneously at any combination. Due to the keypad interface, more than two keys pressed simultaneously with some specific pattern will get the wrong information. If these specific patterns are excluded, the keypad-scanning block can detect 11 keys at the same time and it's shown as **Figure 45**.

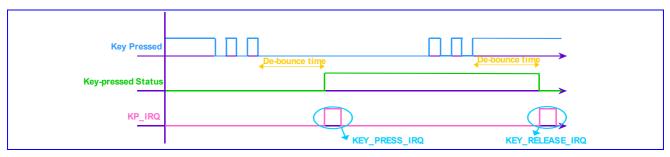


Figure 43 One key pressed with de-bounce mechanism denoted

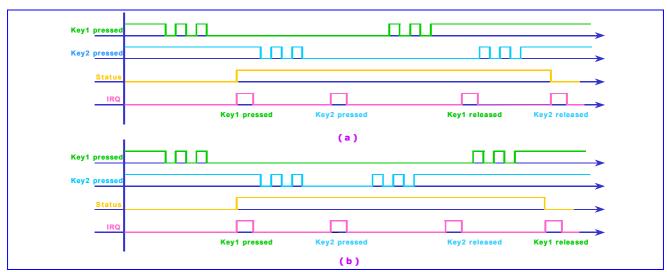


Figure 44 (a) Two keys pressed, case 1 (b) Two keys pressed, case 2

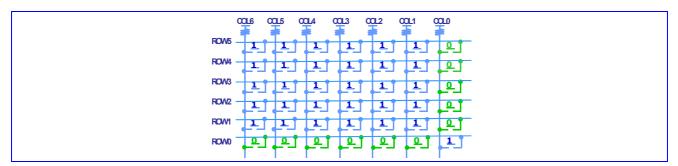


Figure 45 11 keys are detected at the same time

4.6.2 Register Definitions

KP +0000h Keypad status

KP_STA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																STA
Type																RO
Reset																0

STA This register indicates the keypad status, and it will not be cleared by read.

- 0 No key pressed
- 1 Key pressed

KP +0004h Keypad scanning output, the lower 16 keys

KP_LOW_KEY

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		KEYS [15:0]														
Type								R	0							
Reset								FFF	Fh							

KP +0008h Keypad scanning output, the medium 16 keys

KP_MID_KEY

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
Type								R	0							
Reset								FFF	Fh							

KP+000Ch Keypad scanning output, the higher 4 keys

KP_HIGH_KEY

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							KEYS[41:32]									
Type											R	0				
Reset											3F	F'h				

These two registers list the status of 42 keys on the keypad. When the MCU receives the KEYPAD IRQ, both two registers must be read. If any key is pressed, the relative bit will be set to 0.

KEYS Status list of the 42 keys.

KP +00010h De-bounce period setting

KP_DEBOUNC

Е

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								DE	BOUN	CE [13	:0]					
Type									R/	W						
Reset									40	0h						

This register defines the waiting period before key press or release events are considering stale.

DEBOUNCE De-bounce time = KP_DEBOUNCE/32 ms.

4.7 General Purpose Inputs/Outputs

MT6225 offers 53 general-purpose I/O pins and 4 general-purpose output pins. By setting the control registers, MCU software can control the direction, the output value, and read the input values on these pins. These GPIOs and GPOs are multiplexed with other functionalities to reduce the pin count.

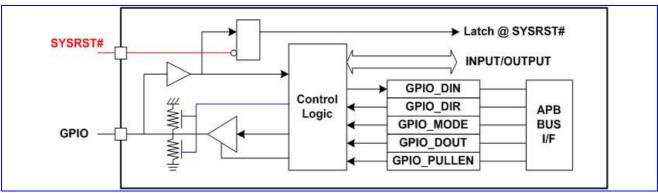


Figure 46 GPIO Block Diagram

GPIOs at RESET

Upon hardware reset (SYSRST#), GPIOs are all configured as inputs and the following alternative usages of GPIO pins are enabled:

These GPIOs are used to latch the inputs upon reset to memorize the desired configuration to make sure that the system restarts or boots in the right mode.

Multiplexing of Signals on GPIO

The GPIO pins can be multiplexed with other signals.

- DAICLK, DAIPCMIN, DAIPCMOUT, DAIRST: digital audio interface for FTA
- BPI BUS6, BPI BUS7, BPI BUS8, BPI BUS9: radio hard-wire control
- BSI CS1: additional chip select signal for radio 3-wire interface
- LSCK, LSA0, LSDA, LSCE0#, LSCE1#: serial display interface
- LPCE1#: parallel display interface chip select signal
- NRNB, NCLE, NALE, NWEB, NREB, NCEB: nand-flash control signals
- PWM1, PWM2: pulse width modulation signal
- ALERTER: pulse width modulation signal for buzzer
- IRDA RXD, IRDA TXD, IRDA PDN: IrDA control signals
- URXD2, UTXD2, URTS2, UCTS2: data and flow control signals for UART2
- URXD3, UTXD3, URTS3, UCTS3: data and flow control signals for UART3
- CMMCLK, CMRST, CMPDN, CMVREF, CMHREF, CMDAT7~CMDAT0: cmos sensor interface
- SRCLKENAI: external power on signal of the external VCXO LDO

Multiplexed of Signals on GPO

- SRCLKENA: power on signal of the external VCXO LDO
- EA25, EA24: external memory interface address bit [25:24]
- EPDN_B: external memory power down signal
- 32KHz, 6.5MHz, 13MHz, 26MHz clocks

Register Definitions 4.7.1

GPIO+0000h GPIO direction control register 1

GPIO_DIR1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GPIO 15	GPIO 14	GPIO 13	GPIO 12	GPIO 11	GPIO 10	GPIO 9	GPIO 8	GPIO 7	GPIO 6	GPIO 5	GPIO 4	GPIO 3	GPIO 2	GPIO 1	GPIO 0
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

GPIO +0010h GPIO direction control register 2

GPIO_DIR2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GPIO 31	GPIO 30	GPIO 29	GPIO 28	GPIO 27	GPIO 26	GPIO 25			GPIO 22	GPIO 21	PGIO 20	GPIO 19	GPIO 18	GPIO 17	GPIO 16
Type	R/W			R/W												
Reset	0	0	0	0	0	0	0			0	0	0	0	0	0	0

GPIO+0020h GPIO direction control register 3

GPIO_DIR3

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GPIO															
Ivallie	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
Type	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

GPIO+0030h GPIO direction control register 4

GPIO_DIR4

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										GPIO 54	GPIO 53	GPIO 52	GPIO 51	GPIO 50	GPIO 49	GPIO 48
Туре										R/W						
Reset										0	0	0	0	0	0	0

GPIO*n* GPIO direction control

- O GPIOs are configured as input
- GPIOs are configured as output

GPIO +0040h GPIO pull-up/pull-down enable register 1

GPIO_PULLEN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GPIO 15	GPIO 14	GPIO 13	GPIO 12	GPIO 11	GPIO 10	GPIO 9	GPIO 8	GPIO 7	GPIO 6	GPIO 5	GPIO 4	GPIO 3	GPIO 2	GPIO 1	GPIO 0
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

GPIO +0050h GPIO pull-up/pull-down enable register 2

GPIO_PULLEN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GPIO 31	GPIO 30	GPIO 29	GPIO 28	GPIO 27	GPIO 26	GPIO 25			GPIO 22	GPIO 21	PGIO 20	GPIO 19	GPIO 18	GPIO 17	GPIO 16
Type	R/W			R/W												
Reset	1	1	1	1	1	1	1			1	1	1	1	1	1	1

GPIO+0060h GPIO pull-up/pull-down enable register 3

GPIO_PULLEN

3

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Name	GPIO 47	GPIO 46	GPIO 45	GPIO 44	GPIO 43	GPIO 42	GPIO 41	GPIO 40	GPIO 39	GPIO 38	GPIO 37	GPIO 36	GPIO 35	GPIO 34	GPIO 33	GPIO 32
Type	R/W															
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

GPIO+0070h GPIO pull-up/pull-down enable register 4

GPIO_PULLEN4

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										GPIO 54	GPIO 53	GPIO 52	GPIO 51	GPIO 50	GPIO 49	GPIO 48
Туре										R/W						
Reset										1	1	1	1	1	1	1

GPIO GPIO pull up/down enable

- O GPIOs pull up/down is not enabled
- 1 GPIOs pull up/down is enabled

GPIO +0080h GPIO data inversion control register 1

GPIO_DINV1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	INV15	INV14	INV13	INV12	INV11	INV10	INV9	INV8	INV7	INV6	INV5	INV4	INV3	INV2	INV1	INV0
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

GPIO +0090h GPIO data inversion control register 2

GPIO_DINV2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	INV31	INV30	INV29	INV28	INV27	INV26	INV25			INV22	INV21	INV20	INV19	IVN18	INV17	INV16
Type	R/W			R/W												
Reset	0	0	0	0	0	0	0	_		0	0	0	0	0	0	0

GPIO +00A0h GPIO data inversion control register 3

GPIO_DINV3

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	INV47	INV46	INV45	INV44	INV43	INV42	INV41	INV40	INV39	INV38	INV37	INV36	INV35	INV34	INV33	INV32
Type	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

GPIO+00B0h GPIO data inversion control register 4

GPIO_DINV4

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										INV54	INV53	INV52	INV51	INV50	INV49	INV48
Type										R/W						
Reset										0	0	0	0	0	0	0

INVn GPIO inversion control

- O GPIOs data inversion disable
- 1 GPIOs data inversion enable

GPIO +00C0h GPIO data output register 1

GPIO_DOUT1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GPIO															
Ivallie	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Type	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

GPIO +00D0h GPIO data output register 2

GPIO_DOUT2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO			GPIO	GPIO	PGIO	GPIO	GPIO	GPIO	GPIO
	31	30	29	28	27	26	25			22	21	20	19	18	17	16

Type	R/W		R/W												
Reset	0	0	0	0	0	0	0		0	0	0	0	0	0	0

GPIO +00E0h GPIO data output register 3

GPIO_DOUT3

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GPIO 47	GPIO 46	GPIO 45	GPIO 44	GPIO 43	GPIO 42	GPIO 41	GPIO 40	GPIO 39	GPIO 38	GPIO 37	GPIO 36	GPIO 35	GPIO 34	GPIO 33	GPIO 32
Туре	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

GPIO+00F0h GPIO data output register 4

GPIO_DOUT4

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										GPIO 54	GPIO 53	GPIO 52	GPIO 51	GPIO 50	GPIO 49	GPIO 48
Type										R/W						
Reset		•								0	0	0	0	0	0	0

GPIOn GPIO data output control

- O GPIOs data output 1
- 1 GPIOs data output 0

GPIO +0100h GPIO data Input register 1

GPIO_DIN1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Nama	GPIO															
Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Type	RO															
Reset	Χ	Χ	Х	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Х

GPIO +0110h GPIO data Input register 2

GPIO_DIN2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GPIO 31	GPIO 30	GPIO 29	GPIO 28	GPIO 27	GPIO 26	GPIO 25			GPIO 22	GPIO 21	PGIO 20	GPIO 19	GPIO 18	GPIO 17	GPIO 16
Туре	RO			RO												
Reset	Χ	Χ	Χ	Х	Χ	Χ	Х			Χ	Χ	Χ	Χ	Χ	Χ	Χ

GPIO +0120h GPIO data Input register 3

GPIO_DIN3

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GPIO 47	GPIO 46	GPIO 45	GPIO 44	GPIO 43	GPIO 42	GPIO 41	GPIO 40	GPIO 39	GPIO 38	GPIO 37	GPIO 36	GPIO 35	GPIO 34	GPIO 33	GPIO 32
Type	RO															
Reset	Χ	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Χ	Χ

GPIO+0130h GPIO data input register 4

GPIO_DIN4

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										GPIO 54	GPIO 53	GPIO 52	GPIO 51	GPIO 50	GPIO 49	GPIO 48
Type										RO						
Reset					•		·			Х	Х	X	X	Х	Χ	X

GPIOn GPIOs data input

GPIO +0140h GPO data output register

GPO_DOUT

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name													GPO3	GPO ₂	GPO1	GPO0
Type													R/W	R/W	R/W	R/W

Reset 0 0 0 0

GPIO +0150h GPIO mode control register 1

GPIO_MODE1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GPIO	7_M	GPIC)6_M	GPIC)5_M	GPIC)4_M	GPIC)3_M	GPIC)2_M	GPIC	1_M	GPIC	M_00
Type	R۸	Ν	R/	W	R/	W	R/	W								
Reset	00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- GPIO0_M GPIO mode selection
 - **00** Configured as GPIO function
 - 01 Reserved
 - 10 Reserved
 - 11 External interrupt 4
- **GPIO1_M** GPIO mode selection
 - **00** Configured as GPIO function
 - 01 Reserved
 - 10 Reserved
 - **11** External interrupt 5
- **GPIO2** M GPIO mode selection
 - **00** Configured as GPIO function
 - 01 Resreved
 - 10 UART1 CTS signal
 - **11** External interrupt 6
- **GPIO3_M** GPIO mode selection
 - **00** Configured as GPIO function
 - **01** BSI RF calibration data input
 - 10 UART1 RTS signal
 - **11** External interrupt 7
- **GPIO4_M** GPIO mode selection
 - **00** Configured as GPIO function
 - **01** Digital Audio Interface Reset Signal Input
 - 10 IrDA Power Down Control Signal
 - 11 DSP Clock
- **GPIO5_M** GPIO mode selection
 - **00** Configured as GPIO function
 - 01 EDI Clock
 - 10 26MHz Clock
 - 11 AHB Clock
- **GPIO6_M** GPIO mode selection
 - **00** Configured as GPIO function
 - **01** EDI word select
 - 10 32KHz Clock
 - 11 MCU Clock
- **GPIO7** M GPIO mode selection
 - **00** Configured as GPIO function
 - **01** EDI serial data
 - 10 Resreved
 - 11 Slow Clock

GPIO +0160h GPIO mode control register 2

GPIO_MODE2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GPIO	15_M	GPIO	14_M	GPIO	13_M	GPIO	12_M	GPIO	11_M	GPIO	10_M	GPIC)9_M	GPIC	M_8C
Type	R/	W														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- **GPIO8_M** GPIO mode selection
 - **00** Configured as GPIO function
 - **01** I²C Clock
 - 10 Reserved
 - 11 Reserved
- **GPIO9** M GPIO mode selection
 - **00** Configured as GPIO function
 - **01** I²C Data
 - 10 Reserved
 - 11 Reserved
- **GPIO10_M** GPIO mode selection
 - **00** Configured as GPIO function
 - **01** CMOS sensor reset signal output
 - 10 Reserved
 - 11 Reserved
- **GPIO11_M** GPIO mode selection
 - **00** Configured as GPIO function
 - **01** CMOS sensor power down control
 - 10 Reserved
 - 11 Reserved
- **GPIO12** M GPIO mode selection
 - **00** Configured as GPIO function
 - **01** CMOS sensor vertical reference signal input
 - 10 MIRQ Signal
 - 11 Reserved
- GPIO13_M GPIO mode selection
 - **00** Configured as GPIO function
 - **01** CMOS sensor horizontal reference signal input
 - **10** MFIQ Signal
 - 11 Reserved
- GPIO14_M GPIO mode selection
 - **00** Configured as GPIO function
 - **01** CMOS sensor master clock output
 - 10 26MHz Clock
 - 11 6.5MHz Clock
- **GPIO15** M GPIO mode selection
 - **00** Configured as GPIO function
 - **01** CMOS sensor data input 7
 - **10** MMC4.0 data 7
 - 11 Reserved

GPIO +0170h GPIO mode control register 3

GPIO_MODE3

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	-																
	I	Bit	15	14	1 1 3	12	11	9	8	7	6	5	4	3	2	1	0

Name	GPIO22_M	GPIO21_M	GPIO20_M	GPIO19_M	GPIO18_M	GPIO17_M	GPIO16_M
Туре	R/W						
Reset	00	00	00	00	00	00	00

GPIO16_M GPIO mode selection

- **00** Configured as GPIO function
- **01** CMOS sensor data input 6
- **10** MMC4.0 data 6
- 11 DSP ICE clock

GPIO17_M GPIO mode selection

- **00** Configured as GPIO function
- **01** CMOS sensor data input 5
- **10** MMC4.0 data 5
- 11 DSP ICE data

GPIO18_M GPIO mode selection

- **00** Configured as GPIO function
- **01** CMOS sensor data input 4
- **10** MMC4.0 data 4
- 11 DSP ICE mode select

GPIO19_M GPIO mode selection

- **00** Configured as GPIO function
- **01** CMOS sensor data input 3
- **10** DSP General Purpose Output 3
- 11 TDMA Timer Uplink Frame Enable Signal

GPIO20_M GPIO mode selection

- **00** Configured as GPIO function
- **01** CMOS sensor data input 2
- **10** DSP General Purpose Output 2
- 11 TDMA Timer Uplink Frame Sync Signal

GPIO21_M GPIO mode selection

- **00** Configured as GPIO function
- **01** CMOS sensor data input 1
- **10** DSP General Purpose Output 1
- 11 TDMA Timer Downlink Frame Enable Signal

GPIO22_M GPIO mode selection

- **00** Configured as GPIO function
- **01** CMOS sensor data input 0
- **10** DSP General Purpose Output 0
- 11 TDMA Timer Downlink Frame Sync Signal

GPIO +0180h GPIO mode control register 4

GPIO_MODE4

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GPIO	31_M	GPIO	30_M	GPIO	29_M	GPIO	28_M	GPIO	27_M	GPIO	26_M	GPIO	25_M		
Type	R/	W														
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0		_

GPIO25_M GPIO mode selection

- **00** Configured as GPIO function
- 01 BPI BUS6
- **10** PWM1
- 11 13MHz Clock

GPIO26_M GPIO mode selection

- **00** Configured as GPIO function
- 01 BPI BUS7
- **10** PWM2
- 11 32KHz Clock

GPIO27_M GPIO mode selection

- **00** Configured as GPIO function
- 01 BPI BUS8
- 10 Alerter
- 11 26MHz Clock

GPIO28_M GPIO mode selection

- **00** Configured as GPIO function
- 01 BPI BUS9
- **10** BSI CS1
- 11 Reserved

GPIO29_M GPIO mode selection

- **00** Configured as GPIO function
- **01** Serial LCD Interface/PM IC Interface Clock Signal
- 10 TDMA Timer Debug Port Clock Output
- 11 DSP Task ID 0

GPIO30_M GPIO mode selection

- **00** Configured as GPIO function
- 01 Serial LCD Interface Address/Data Signal
- 10 TDMA Timer Debug Port Data Output 1
- 11 TDMA Timer DIRQ Signal

GPIO31_M GPIO mode selection

- **00** Configured as GPIO function
- **01** Serial LCD Interface Data/PM IC Interface Data Signal
- **10** TDMA Timer Debug Port Data Output 0
- **11** TDMA Timer CTIRQ2 Signal

GPIO +0190h GPIO mode control register 5

GPIO_MODE5

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GPIO	39_M	GPIO	38_M	GPIO	37_M	GPIO	36_M	GPIO	35_M	GPIO	34_M	GPIO	33_M	GPIO	32_M
Type	R/	W														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

GPIO32_M GPIO mode selection

- **00** Configured as GPIO function
- **01** Serial LCD Interface/PM IC Interface Chip Select Signal 0
- 10 TDMA Timer Debug Port Frame Sync Signal
- 11 TDMA Timer CTIRQ1 Signal

GPIO33 M GPIO mode selection

- **00** Configured as GPIO function
- **01** Serial LCD Interface Chip Select Signal 1
- 10 Parallel LCD Interface Chip Select Signal 2
- 11 TDMA Timer Event Validate Signal

GPIO34_M GPIO mode selection

- **00** Configured as GPIO function
- **01** Parallel LCD Interface Chip Select Signal 1

- 10 Nandflash Interface Chip Select Signal 1
- 11 Reserved

GPIO35_M GPIO mode selection

- **00** Configured as GPIO function
- 01 NAND/LCD data 17
- 10 Keypad column bit 5
- 11 VPP65 programming voltage indication of OTP macros

GPIO36_M GPIO mode selection

- **00** Configured as GPIO function
- 01 NAND/LCD data 16
- 10 Keypad column bit 6
- 11 Reserved

GPIO37_M GPIO mode selection

- **00** Configured as GPIO function
- 01 Nandflash Interface Ready/Busy Signal
- 10 DSP Task ID 1
- 11 Reserved

GPIO38_M GPIO mode selection

- **00** Configured as GPIO function
- **01** Nandflash Interface Command Latch Signal
- 10 DSP Task ID 2
- 11 Reserved

GPIO39_M GPIO mode selection

- **00** Configured as GPIO function
- **01** Nandflash Interface Address Latch Signal
- 10 DSP Task ID 3
- 11 Reserved

GPIO +01A0h GPIO mode control register 6

GPIO MODE6

Bit	15 14	13 12	11 10	9 8	7 6	5 4	3 2	1 0
Name	GPIO47_M	GPIO46_M	GPIO45_M	GPIO44_M	GPIO43_M	GPIO42_M	GPIO41_M	GPIO40_M
Type	R/W							
Reset	00	00	00	00	00	00	00	00

GPIO40_M GPIO mode selection

- **00** Configured as GPIO function
- **01** Nandflash Interface Write Strobe Signal
- 10 DSP Task ID 4
- 11 Reserved

GPIO41_M GPIO mode selection

- **00** Configured as GPIO function
- **01** Nandflash Interface Read Strobe Signal
- 10 DSP Task ID 5
- 11 Reserved

GPIO42_M GPIO mode selection

- **00** Configured as GPIO function
- **01** Nandflash Interface Chip Select Signal 0
- 10 DSP Task ID 6
- 11 Reserved

GPIO43_M GPIO mode selection

- **00** Configured as GPIO function
- **01** VCXO Enable Signal Input
- 10 Reserved
- 11 Reserved

GPIO44_M GPIO mode selection

- **00** Configured as GPIO function
- 01 MS/SD/MMC/MS PRO Write Protection Signal
- 10 Reserved
- 11 Reserved

GPIO45 M GPIO mode selection

- **00** Configured as GPIO function
- **01** MS/SD/MMC Card Insertion Signal
- 10 Reserved
- 11 Reserved

GPIO46_M GPIO mode selection

- **00** Configured as GPIO function
- **01** SIM Interface Voltage Select Signal
- 10 Reserved
- 11 Reserved

GPIO47_M GPIO mode selection

- **00** Configured as GPIO function
- 01 UART2 RXD Signal
- **10** UART3 CTS Signal
- 11 IrDA RXD Signal

GPIO +01B0h GPIO mode control register 7

GPIO MODE7

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			GPI	O54	GPI	O53	GPI	O52	GPI	O51	GPI	O50	GPI	O49	GPI	O48
Type			R/	W												
Reset)	()	()	()	()	()	()

GPIO48_M GPIO mode selection

- **00** Configured as GPIO function
- 01 UART2 TXD Signal
- 10 UART3 RTS Signal
- 11 IrDA TXD Signal

GPIO49_M GPIO mode selection

- **00** Configured as GPIO function
- **01** UART3 RXD Signal
- 10 UART2 CTS Signal
- 11 Reserved

GPIO50_M GPIO mode selection

- **00** Configured as GPIO function
- **01** UART3 TXD Signal
- 10 UART2 RTS Signal
- 11 Reserved

GPIO51_M GPIO mode selection

- **00** Configured as GPIO function
- **01** Digital Audio Interface Clock Output
- 10 Reserved

- 11 Reserved
- GPIO52_M GPIO mode selection
 - **00** Configured as GPIO function
 - **01** Digital Audio Interface PCM Data Output
 - 10 Reserved
 - 11 Reserved
- **GPIO53_M** GPIO mode selection
 - **00** Configured as GPIO function
 - **01** Digital Audio Interface PCM Data Input
 - 10 Reserved
 - 11 Reserved

GPIO54 M GPIO mode selection

- **00** Configured as GPIO function
- **01** Digital Audio Interface Synchronization Signal Output
- 10 Resreved
- 11 Reserved

GPIO +01C0h GPO mode control register 1

GPO_MODE1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									GPO	3_M	GPO	2_M	GPC	1_M	GPO	M_0
Type									R/	W	R/	W	R/	W	R/	W
Reset									0	1	0	1	0	1	0	1

- **GPO0_M** GPO mode selection
 - **00** Configured as GPO function
 - **01** VCXO Enable Signal Output Active High
 - 10 Reserved
 - 11 Reserved
- **GPO1_M** GPO mode selection
 - **00** Configured as GPO function
 - **01** External Memory Interface Address 24
 - 10 26MHz Clock
 - 11 32KHz Clock
- **GPO2_M** GPO mode selection
 - **00** Configured as GPO function
 - **01** External Memory Interface Address25
 - 10 32KHz Clock
 - 11 26MHz Clock
- **GPO3_M** GPO mode selection
 - **00** Configured as GPO function
 - **01** External Memory Interface Power Down Control for Pseudo SRAM
 - 10 6.5MHz Clock
 - 11 26MHz Clock

GPIO+xxx4h GPIO xxx register SET

GPIO XXX SET

For all registers addresses listed above, writing to the +4h addresse offset will perform a bit-wise **OR** function between the 16bit written value and the 16bit register value already existing in the corresponding GPIO_xxx registers.

If GPIO DIR1 (GPIO+0000h) = 16'h0F0F,

writing GPIO_DIR1_SET (GPIO+0004h) = 16'F0F0 will result in GPIO_DIR1 = 16'hFFFF.

GPIO+xxx8h GPIO xxx register CLR

GPIO_XXX_CLR

For all registers addresses listed above, writing to the +8h addresse offset will perform a bit-wise **AND-NOT** function between the 16bit written value and the 16bit register value already existing in the corresponding GPIO_xxx registers. Eg.

If GPIO DIR1 (GPIO+0000h) = 16'h0F0F,

writing GPIO DIR1 CLR (GPIO+0008h) = 16'0F0F will result in GPIO DIR1 = 16'h0000.

CONFG +0704h

LCD/CAM I/O driving strength control

ACIF_CON1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				SLCD _SR	SLCD _E2	SLCD _E4	PLCD _SR	PLCD _E2	PLCD _E4	CAM_ PD	CAM_ E2	CAM_ E4	CAM_ E8			
Type				R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset				0	0	0	0	0	0	0	0	0	0			

CAM E8 The driving strength control of the CMMCLK pin (CMOS sensor master clock).

CAM _E4 The driving strength control of the CMMCLK pin.

CAM _E2 The driving strength control of the CMMCLK pin.

CAM _PD Pulldown control of CMOS sensor pins (CMMCLK, CMPCLK, CMRST, CMPDN, CMVREF, CMHREF, CMDAT7~ CMDAT0).

PLCD _E4 The driving strength control of the parallel LCM control interface and NFI/LCM shared data bus.

PLCD _E2 The driving strength control of the parallel LCM control interface and NFI/LCM shared data bus.

PLCD_SR The slew rate control of the parallel LCM control interface and NFI/LCM shared data bus.

SLCD_E4 The driving strength control of the serial LCM interface.

SLCD _E2 The driving strength control of the serial LCM interface.

SLCD _SR The slew rate control of the serial LCM interface.

4.8 General Purpose Timer

4.8.1 General Description

Three general-purpose timers are provided. The timers are 16 bits long and run independently of each other, although they share the same clock source. Two timers can operate in one of two modes: one-shot mode and auto-repeat mode; the other is a free running timer. In one-shot mode, when the timer counts down and reaches zero, it is halted. In auto-repeat mode, when the timer reaches zero, it simply resets to countdown initial value and repeats the countdown to zero; this loop repeats until the disable signal is set to 1. Regardless of the timer's mode, if the countdown initial value (i.e. GPTIMER1_DAT for GPT1 or GPTIMER_DAT2 for GPT2) is written when the timer is running, the new initial value does not take effect until the next time the timer is restarted. In auto-repeat mode, the new countdown start value is used on the next countdown iteration. Therefore, before enabling the gptimer, the desired values for GPTIMER_DAT and the GPTIMER_PRESCALER registers must first be set.

4.8.2 Register Definitions

GPT +0000h GPT1 Control register

GPTIMER1 CO

N

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	EN	MODE														
Type	R/W	R/W														
Reset	0	0														

MODE This register controls GPT1 to count repeatedly (in a loop) or just one-shot.

- One-shot mode is selected.
- 1 Auto-repeat mode is selected.

EN This register controls GPT1 to start counting or to stop.

- **O** GPT1 is disabled.
- 1 GPT1 is enabled

GPTIMER1_DA

+

GPT +0004h GPT1 Time-Out Interval register

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								CNT	[15:0]							
Type								R/	W							
Reset								FFF	Fh							

CNT [15:0] Initial counting value. GPT1 counts down from GPTIMER1_DAT. When GPT1 counts down to zero, a GPT1 interrupt is generated.

GPT +0008h GPT2 Control register

GPTIMER2_CO

N

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	EN	MODE														
Type	R/W	R/W														
Reset	0	0			_											

MODE This register controls GPT2 to count repeatedly (in a loop) or just one-shot.

- One-shot mode is selected
- 1 Auto-repeat mode is selected

EN This register controls GPT2 to start counting or to stop.

GPT +000Ch GPT2 Time-Out Interval register

- O GPT2 is disabled.
- 1 GPT2 is enabled.

GPTIMER2_DA

_

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								CNT	[15:0]							
Type								R/	W							
Reset								FFF	Fh							

CNT [15:0] Initial counting value. GPT2 counts down from GPTIMER2_DAT. When GPT2 counts down to zero, a GPT2 interrupt is generated.

GPT +0010h GPT Status register

GPTIMER_STA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name															GPT2	GPT1
Type															RC	RC
Reset															0	0

This register illustrates the gptimer timeout status. Each flag is set when the corresponding timer countdown completes, and can be cleared when the CPU reads the status register.

GPT +0014h GPT1 Prescaler register

GPTIMER1 PRES

CALER

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3																
	Bit	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Name							PRESCALER [2:0]
Туре							R/W
Reset							100b

PRESCALER This register controls the counting clock for gptimer1.

000 16 KHz

0018 KHz

0104 KHz

011 2 KHz

100 1 KHz

101 500 Hz

110 250 Hz

111 125 Hz

GPT +0018h GPT2 Prescaler register

GPTIMER2_PRES CALER

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														PRES	CALEF	R [2:0]
Type															R/W	
Reset															100b	

PRESCALER This register controls the counting clock for gptimer2.

000 16 KHz

0018 KHz

0104 KHz

011 2 KHz

100 1 KHz

101 500 Hz

110 250 Hz

111 125 Hz

GPT+001Ch GPT3 Control register

GPTIMER3_CO

N

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																EN
Type																R/W
Reset							_									0

EN This register controls GPT3 to start counting or to stop.

- **O** GPT3 is disabled.
- 1 GPT3 is enabled.

GPT+0020h GPT3 Time-Out Interval register

GPTIMER3_DA

T

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								CNT[15:0]							
Type								R	0							
Reset								()							

CNT [15:0] If EN=1, GPT3 is a free running timer . Software reads this register for the countdown start value for GPT3.

GPT+0024h GPT3 Prescaler register

GPTIMER3_PRES CALER

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														PRES	CALER	R [2:0]
Type															R/W	
Reset															100b	

PRESCALER This register controls the counting clock for gptimer3.

000 16 KHz

0018 KHz

0104 KHz

011 2 KHz

100 1 KHz

101 500 Hz

110 250 Hz

111 125 Hz

4.9 UART

4.9.1 General Description

The baseband chipset houses three UARTs. The UARTs provide full duplex serial communication channels between baseband chipset and external devices.

The UART has M16C450 and M16550A modes of operation, which are compatible with a range of standard software drivers. The extensions have been designed to be broadly software compatible with 16550A variants, but certain areas offer no consensus.

In common with the M16550A, the UART supports word lengths **from five to eight bits**, **an optional parity bit** and one or two stop bits, and is fully programmable by an 8-bit CPU interface. A 16-bit programmable baud rate generator and an 8-bit scratch register are included, together with separate transmit and receive FIFOs. Eight modem control lines and a diagnostic loop-back mode are provided. The UART also includes two DMA handshake lines, used to indicate when the FIFOs are ready to transfer data to the CPU. Interrupts can be generated from any of the 10 sources.

Note: The UART has been designed so that all internal operations are synchronized by the CLK signal. This synchronization results in minor timing differences between the UART and the industry standard 16550A device, which means that the core is not clock for clock identical to the original device.

After a hardware reset, the UART is in M16C450 mode. Its FIFOs can be enabled and the UART can then enter M16550A mode. The UART adds further functionality beyond M16550A mode. Each of the extended functions can be selected individually under software control.

The UART provides more powerful enhancements than the industry-standard 16550:

- Hardware flow control. This feature is very useful when the ISR latency is hard to predict and control in the
 embedded applications. The MCU is relieved of having to fetch the received data within a fixed amount of
 time.
- Output of an IR-compatible electrical pulse with a width 3/16 of that of a regular bit period.

Note: In order to enable any of the enhancements, the Enhanced Mode bit, EFR[4], must be set. If EFR[4] is not set,

IER[7:5], FCR[5:4], ISR[5:4] and MCR[7:6] cannot be written. The Enhanced Mode bit ensures that the UART is backward compatible with software that has been written for 16C450 and 16550A devices.

Figure 47 shows the block diagram of the UART device.



Figure 47 Block Diagram of UART

4.9.2 Register Definitions

n = 1, 2, 3; for uart1, uart2 and uart3 respectively.

UARTn+0000h RX Buffer Register

UΑ	R	Γn	R	В	R
•				_	• •

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												RBR	[7:0]			
Type												R	0			

RBR RX Buffer Register. Read-only register. The received data can be read by accessing this register. Modified when LCR[7] = 0.

UARTn+0000h TX Holding Register

UARTn_THR

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												THR	17'111			
Type												W	' O			

THR TX Holding Register. Write-only register. The data to be transmitted is written to this register, and then sent to the PC via serial communication.

Modified when LCR[7] = 0.

UARTn+0004h Interrupt Enable Register

UARTN IER

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									CTSI	RTSI	XOFFI	X	EDSSI	ELSI	ETBEI	ERBFI
Type												R/	W			
Reset												()			

IER By storing a '1' to a specific bit position, the interrupt associated with that bit is enabled. Otherwise, the interrupt is disabled.

IER[3:0] are modified when LCR[7] = 0.

IER[7:4] are modified when LCR[7] = 0 & EFR[4] = 1.

CTSI Masks an interrupt that is generated when a rising edge is detected on the CTS modern control line.

Note: This interrupt is only enabled when hardware flow control is enabled.

- **0** Unmask an interrupt that is generated when a rising edge is detected on the CTS modem control line.
- Mask an interrupt that is generated when a rising edge is detected on the CTS modem control line.

RTSI Masks an interrupt that is generated when a rising edge is detected on the RTS modem control line.

Note: This interrupt is only enabled when hardware flow control is enabled.

- Unmask an interrupt that is generated when a rising edge is detected on the RTS modem control line.
- 1 Mask an interrupt that is generated when a rising edge is detected on the RTS modem control line.

XOFFI Masks an interrupt that is generated when an XOFF character is received.

Note: This interrupt is only enabled when software flow control is enabled.

- **0** Unmask an interrupt that is generated when an XOFF character is received.
- 1 Mask an interrupt that is generated when an XOFF character is received.

EDSSI When set ("1"), an interrupt is generated if DDCD, TERI, DDSR or DCTS (MSR[4:1]) becomes set.

- **0** No interrupt is generated if DDCD, TERI, DDSR or DCTS (MSR[4:1]) becomes set.
- 1 An interrupt is generated if DDCD, TERI, DDSR or DCTS (MSR[4:1]) becomes set.

ELSI When set ("1"), an interrupt is generated if BI, FE, PE or OE (LSR[4:1]) becomes set.

- **0** No interrupt is generated if BI, FE, PE or OE (LSR[4:1]) becomes set.
- 1 An interrupt is generated if BI, FE, PE or OE (LSR[4:1]) becomes set.

ETBEI When set ("1"), an interrupt is generated if the TX Holding Register is empty or the contents of the TX FIFO have been reduced to its Trigger Level.

- **0** No interrupt is generated if the TX Holding Register is empty or the contents of the TX FIFO have been reduced to its Trigger Level.
- 1 An interrupt is generated if the TX Holding Register is empty or the contents of the TX FIFO have been reduced to its Trigger Level

ERBFI When set ("1"), an interrupt is generated if the RX Buffer contains data.

- **0** No interrupt is generated if the RX Buffer contains data.
- 1 An interrupt is generated if the RX Buffer contains data.

UARTn+0008h Interrupt Identification Register

UARTn_IIR

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									FIF	OE	ID4	ID3	ID2	ID1	ID0	NINT
Туре												R	0			
Reset									0	0	0	0	0	0	0	1

IIR Identify if there are pending interrupts; ID4 and ID3 are presented only when EFR[4] = 1. The following table gives the IIR[5:0] codes associated with the possible interrupts:

IIR[5:0]	Priority	Interrupt	Source
	Level		
000001	-	No interrupt pending	
000110	1	Line Status Interrupt	BI, FE, PE or OE set in LSR
000100	2	RX Data Received	RX Data received or RX Trigger Level reached.
001100	2	RX Data Timeout	Timeout on character in RX FIFO.
000010	3	TX Holding Register Empty	TX Holding Register empty or TX FIFO Trigger Level reached.
000000	4	Modem Status change	DDCD, TERI, DDSR or DCTS set in MSR
010000	5	Software Flow Control	XOFF Character received
100000	6	Hardware Flow Control	CTS or RTS Rising Edge

Table 27 The IIR[5:0] codes associated with the possible interrupts

Line Status Interrupt: A RX Line Status Interrupt (IIR[5:0`] == 000110b) is generated if ELSI (IER[2]) is set and any of BI, FE, PE or OE (LSR[4:1]) becomes set. The interrupt is cleared by reading the Line Status Register.

RX Data Received Interrupt: A RX Received interrupt (IER[5:0] == 000100b) is generated if EFRBI (IER[0]) is set and either RX Data is placed in the RX Buffer Register or the RX Trigger Level is reached. The interrupt is cleared by reading the RX Buffer Register or the RX FIFO (if enabled).

RX Data Timeout Interrupt:

When virtual FIFO mode is disabled, RX Data Timeout Interrupt is generated if all of the following apply:

- 1. FIFO contains at least one character;
- 2. The most recent character was received longer than four character periods ago (including all start, parity and stop bits);
- 3. The most recent CPU read of the FIFO was longer than four character periods ago.

The timeout timer is restarted on receipt of a new byte from the RX Shift Register, or on a CPU read from the RX FIFO.

The RX Data Timeout Interrupt is enabled by setting EFRBI (IER[0]) to 1, and is cleared by reading RX FIFO.

When virtual FIFO mode is enabled, RX Data Timeout Interrupt is generated if all of the following apply:

- 1. FIFO is empty;
- 2. The most recent character was received longer than four character periods ago (including all start, parity and stop bits):
- 3. The most recent CPU read of the FIFO was longer than four character periods ago.

The timeout timer is restarted on receipt of a new byte from the RX Shift Register.

RX Holding Register Empty Interrupt: A TX Holding Register Empty Interrupt (IIR[5:0] = 000010b) is generated if ETRBI (IER[1]) is set and either the TX Holding Register or, if FIFOs are enabled, the TX FIFO becomes empty. The interrupt is cleared by writing to the TX Holding Register or TX FIFO if FIFO enabled.

Modem Status Change Interrupt: A Modem Status Change Interrupt (IIR[5:0] = 000000b) is generated if EDSSI (IER[3]) is set and either DDCD, TERI, DDSR or DCTS (MSR[3:0]) becomes set. The interrupt is cleared by reading the Modem Status Register.

Software Flow Control Interrupt: A Software Flow Control Interrupt (IIR[5:0] = 010000b) is generated if Software Flow Control is enabled and XOFFI (IER[5]) becomes set, indicating that an XOFF character has been received. The interrupt is cleared by reading the Interrupt Identification Register.

Hardware Flow Control Interrupt: A Hardware Flow Control Interrupt (IER[5:0] = 100000b) is generated if Hardware Flow Control is enabled and either RTSI (IER[6]) or CTSI (IER[7]) becomes set indicating that a rising edge has been detected on either the RTS/CTS Modem Control line. The interrupt is cleared by reading the Interrupt Identification Register.

UARTn+0008h FIFO Control Register

UARTn FCR

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									RFTL1	RFTL0	TFTL1	TFTL0	DMA1	CLRT	CLRR	FIFOE
Type												W	' O			

FCR FCR is used to control the trigger levels of the FIFOs, or flush the FIFOs.

FCR[7:6] is modified when LCR != BFh

FCR[5:4] is modified when LCR != BFh & EFR[4] = 1

FCR[4:0] is modified when LCR != BFh

FCR[7:6] RX FIFO trigger threshold

0 1

- **1** 6
- **2** 12
- 3 RXTRIG

FCR[5:4] TX FIFO trigger threshold

- **n** 1
- 1 4
- 2 8
- **3** 14 (FIFOSIZE 2)
- DMA1 This bit determines the DMA mode, which the TXRDY and RXRDY pins support. TXRDY and RXRDY act to support single-byte transfers between the UART and memory (DMA mode 0) or multiple byte transfers (DMA mode 1). Note that this bit has no effect unless the FIFOE bit is set as well
 - The device operates in DMA Mode 0.
 - 1 The device operates in DMA Mode 1.
 - TXRDY mode0: Goes active (low) when the TX FIFO or the TX Holding Register is empty. Becomes inactive when a byte is written to the Transmit channel.
 - TXRDY mode1: Goes active (low) when there are no characters in the TX FIFO. Becomes inactive when the TX FIFO is full.
 - RXRDY mode0: Becomes active (low) when at least one character is in the RX FIFO or the RX Buffer Register is full. Becomes inactive when there are no more characters in the RX FIFO or RX Buffer register.
 - RXRDY mode1: Becomes active (low) when the RX FIFO Trigger Level is reached or an RX FIFO Character Timeout occurs. Goes inactive when the RX FIFO is empty.
- **CLRT** Clear Transmit FIFO. This bit is self-clearing.
 - Leave TX FIFO intact.
 - 1 Clear all the bytes in the TX FIFO.
- **CLRR** Clear Receive FIFO. This bit is self-clearing.
 - Leave RX FIFO intact.
 - 1 Clear all the bytes in the RX FIFO.
- **FIFOE** FIFO Enabled. This bit must be set to 1 for any of the other bits in the registers to have any effect.
 - O Disable both the RX and TX FIFOs.
 - 1 Enable both the RX and TX FIFOs.

UARTn+000Ch Line Control Register

UARTn LCR

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									DLAB	SB	SP	EPS	PEN	STB	WLS1	WLS0
Type												R/	W			
Reset									0	0	0	0	0	0	0	0

- **LCR** Line Control Register. Determines characteristics of serial communication signals.
 - Modified when LCR[7] = 0.
- **DLAB** Divisor Latch Access Bit.
 - The RX and TX Registers are read/written at Address 0 and the IER register is read/written at Address 4.
 - 1 The Divisor Latch LS is read/written at Address 0 and the Divisor Latch MS is read/written at Address 4.
- SB Set Break
 - 0 No effect
 - 1 SOUT signal is forced into the "0" state.
- **SP** Stick Parity
 - 0 No effect.
 - 1 The Parity bit is forced into a defined state, depending on the states of EPS and PEN: If EPS=1 & PEN=1, the Parity bit is set and checked = 0.

If EPS=0 & PEN=1, the Parity bit is set and checked = 1.

EPS Even Parity Select

- **0** When EPS=0, an odd number of ones is sent and checked.
- 1 When EPS=1, an even number of ones is sent and checked.

PEN Parity Enable

- **0** The Parity is neither transmitted nor checked.
- The Parity is transmitted and checked.

STB Number of STOP bits

- One STOP bit is always added.
- 1 Two STOP bits are added after each character is sent; unless the character length is 5 when 1 STOP bit is added.

WLS1, 0 Word Length Select.

- 0 5 bits
- **1** 6 bits
- **2** 7 bits
- **3** 8 bits

UARTn+0010h Modem Control Register

UARTn_MCR

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									XOFF STAT US	IR- ENAB LE	X	LOOP	OUT2	OUT1	RTS	DTR
Type												R/	W			
Reset									0	0	0	0	0	0	0	0

MCR Modem Control Register. Control interface signals of the UART.

MCR[4:0] are modified when LCR[7] = 0,

MCR[7:6] are modified when LCR[7] = 0 & EFR[4] = 1.

XOFF Status This is a read-only bit.

- **0** When an XON character is received.
- 1 When an XOFF character is received.

LOOP Loop-back control bit.

- No loop-back is enabled.
- 1 Loop-back mode is enabled.

OUT2 Controls the state of the output NOUT2, even in loop mode.

- **0** NOUT2=1.
- 1 NOUT2=0.

OUT1 Controls the state of the output NOUT1, even in loop mode.

- **0** NOUT1=1.
- 1 NOUT1=0.

RTS Controls the state of the output NRTS, even in loop mode.

- **0** NRTS=1.
- 1 NRTS=0.

DTR Control the state of the output NDTR, even in loop mode.

- **0** NDTR=1.
- 1 NDTR=0.

UARTn+0014h Line Status Register

UARTN LSR

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									FIFOE RR	TEMT	THRE	ВІ	FE	PE	OE	DR

Type								R/	W			
Reset			_		0	1	1	0	0	0	0	0

LSR Line Status Register.

Modified when LCR[7] = 0.

FIFOERR RX FIFO Error Indicator.

- No PE, FE, BI set in the RX FIFO.
- 1 Set to 1 when there is at least one PE, FE or BI in the RX FIFO.

TEMT TX Holding Register (or TX FIFO) and the TX Shift Register are empty.

- Empty conditions below are not met.
- 1 If FIFOs are enabled, the bit is set whenever the TX FIFO and the TX Shift Register are empty. If FIFOs are disabled, the bit is set whenever TX Holding Register and TX Shift Register are empty.

THRE Indicates if there is room for TX Holding Register or TX FIFO is reduced to its Trigger Level.

- Reset whenever the contents of the TX FIFO are more than its Trigger Level (FIFOs are enabled), or whenever TX Holding Register is not empty(FIFOs are disabled).
- 1 Set whenever the contents of the TX FIFO are reduced to its Trigger Level (FIFOs are enabled), or whenever TX Holding Register is empty and ready to accept new data (FIFOs are disabled).

BI Break Interrupt.

- Reset by the CPU reading this register
- If the FIFOs are disabled, this bit is set whenever the SIN is held in the 0 state for more than one transmission time (START bit + DATA bits + PARITY + STOP bits).

 If the FIFOs are enabled, this error is associated with a corresponding character in the FIFO and is flagged

when this byte is at the top of the FIFO. When a break occurs, only one zero character is loaded into the FIFO: the next character transfer is enabled when SIN goes into the marking state and receives the next valid start bit.

FE Framing Error.

- Reset by the CPU reading this register
- 1 If the FIFOs are disabled, this bit is set if the received data did not have a valid STOP bit. If the FIFOs are enabled, the state of this bit is revealed when the byte it refers to is the next to be read.

PE Parity Error

- Reset by the CPU reading this register
- 1 If the FIFOs are disabled, this bit is set if the received data did not have a valid parity bit. If the FIFOs are enabled, the state of this bit is revealed when the referred byte is the next to be read.

OE Overrun Error.

- Reset by the CPU reading this register.
- 1 If the FIFOs are disabled, this bit is set if the RX Buffer was not read by the CPU before new data from the RX Shift Register overwrote the previous contents.

If the FIFOs are enabled, an overrun error occurs when the RX FIFO is full and the RX Shift Register becomes full. OE is set as soon as this happens. The character in the Shift Register is then overwritten, but not transferred to the FIFO.

DR Data Ready.

- O Cleared by the CPU reading the RX Buffer or by reading all the FIFO bytes.
- 1 Set by the RX Buffer becoming full or by a byte being transferred into the FIFO.

UARTn+0018h Modem Status Register

UARTN MSR

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									DCD	RI	DSR	CTS	DDCD	TERI	DDSR	DCTS
Type									R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset									Input	Input	Input	Input	0	0	0	0

Note: After a reset, D4-D7 are inputs. A modem status interrupt can be cleared by writing '0' or set by writing '1' to this register. D0-D3 can be written to.

Modified when LCR[7] = 0.

MSR Modem Status Register

DCD Data Carry Detect.

When Loop = "0", this value is the complement of the NDCD input signal.

When Loop = "1", this value is equal to the OUT2 bit in the Modem Control Register.

RI Ring Indicator.

When Loop = "0", this value is the complement of the NRI input signal.

When Loop = "1", this value is equal to the OUT1 bit in the Modem Control Register.

DSR Data Set Ready

When Loop = "0", this value is the complement of the NDSR input signal.

When Loop = "1", this value is equal to the DTR bit in the Modem Control Register.

CTS Clear To Send.

When Loop = "0", this value is the complement of the NCTS input signal.

When Loop = "1", this value is equal to the RTS bit in the Modem Control Register.

DDCD Delta Data Carry Detect.

- **0** The state of DCD has not changed since the Modem Status Register was last read
- 1 Set if the state of DCD has changed since the Modem Status Register was last read.

TERI Trailing Edge Ring Indicator

- The NRI input does not change since this register was last read.
- 1 Set if the NRI input changes from "0" to "1" since this register was last read.

DDSR Delta Data Set Ready

- O Cleared if the state of DSR has not changed since this register was last read.
- 1 Set if the state of DSR has changed since this register was last read.

DCTS Delta Clear To Send

- O Cleared if the state of CTS has not changed since this register was last read.
- 1 Set if the state of CTS has changed since this register was last read.

UARTn+001Ch Scratch Register

UARTN SCR

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												SCR	[7:0]			
Type												R/	W			

A general purpose read/write register. After reset, its value is un-defined.

Modified when LCR[7] = 0.

UARTn+0000h Divisor Latch (LS)

UARTn DLL

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												DLL	[7:0]			
Type												R/	W			
Reset													1			

UARTn+0004h Divisor Latch (MS)

UARTn_DLM

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												DLL	7:0]			
Type												R/	W			

Reset 0

Note: DLL & DLM can only be updated if DLAB is set ("1").. Note too that division by 1 generates a BAUD signal that is constantly high.

Modified when LCR[7] = 1.

The table below shows the divisor needed to generate a given baud rate from CLK inputs of 13, 26 MHz and 52 MHz. The effective clock enable generated is 16 x the required baud rate.

BAUD	13MHz	26MHz	52MHz
110	7386	14773	29545
300	2708	5417	10833
1200	677	1354	2708
2400	338	677	1354
4800	169	339	677
9600	85	169	339
19200	42	85	169
38400	21	42	85
57600	14	28	56
115200	6	14	28

Table 28 Divisor needed to generate a given baud rate

UARTn+0008h Enhanced Feature Register

UARTn_EFR

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									AUTO CTS	AUTO RTS	D5	ENAB LE -E	SW FLOW CONT[3:0]		[3:0]	
Type									R/W	R/W	R/W	R/W	R/W			
Reset									0	0	0	0	0			

^{*}NOTE: Only when LCR=BF'h

Auto CTS Enables hardware transmission flow control

- O Disabled.
- 1 Enabled.

Auto RTS Enables hardware reception flow control

- Disabled.
- 1 Enabled.

Enable-E Enable enhancement features.

- O Disabled.
- 1 Enabled.

CONT[3:0] Software flow control bits.

- **00xx** No TX Flow Control
- **10xx** Transmit XON1/XOFF1 as flow control bytes
- **01xx** Transmit XON2/XOFF2 as flow control bytes
- 11xx Transmit XON1 & XON2 and XOFF1 & XOFF2 as flow control words
- **xx00** No RX Flow Control
- **xx10** Receive XON1/XOFF1 as flow control bytes
- **xx01** Receive XON2/XOFF2 as flow control bytes
- xx11 Receive XON1 & XON2 and XOFF1 & XOFF2 as flow control words

UARTn+0010h XON1

UARTn_XON1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												XON ²	[7:0]			
Type												R/	W			
Reset										•	•	()			

UARTn+0014h XON2

UARTn_XON2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												XON2	2[7:0]			
Type												R/	W			
Reset												()			

UARTn+0018h XOFF1

UARTn_XOFF1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												XOFF	1[7:0]			
Type												R/	W			
Reset											•	()	•	•	

UARTn+001Ch XOFF2

UARTN XOFF2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												XOFF	2[7:0]			
Type												R/	W			
Reset												()			

^{*}Note: XON1, XON2, XOFF1, XOFF2 are valid only when LCR=BFh.

UARTn+0020h AUTOBAUD_EN

UARTn_AUTOBAU

D_EN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																AUTO _EN
Type																R/W
Reset																0

AUTOBAUD_EN Auto-baud enable signal

- Auto-baud function disable
- 1 Auto-baud function enable

UARTn+0024h HIGH SPEED UART

UARTn_HIGHSPEED

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name															SPEED	[1:0]
Type															R/W	
Reset															0	

SPEED UART sample counter base

- **0** based on 16*baud_pulse, baud_rate = system clock frequency/16/{DLH, DLL}
- 1 based on 8*baud_pulse, baud_rate = system clock frequency/8/{DLH, DLL}
- 2 based on 4*baud_pulse, baud_rate = system clock frequency/4/{DLH, DLL}
- 3 based on sampe count * baud pulse, baud rate = system clock frequency / sampe count

The table below shows the divisor needed to generate a given baud rate from CLK inputs of 13M Hz based on different HIGHSPEED value.

BAUD	HIGHSPEED = 0	HIGHSPEED = 1	HIGHSPEED = 2
110	7386	14773	29545
300	2708	7386	14773
1200	677	2708	7386
2400	338	677	2708
4800	169	338	677
9600	85	169	338
19200	42	85	169
38400	21	42	85
57600	14	21	42
115200	7	14	21
230400	*	7	14
460800	*	*	7
921600	*	*	*

Table 29 Divisor needed to generate a given baud rate from 13MHz based on different HIGHSPEED value

The table below shows the divisor needed to generate a given baud rate from CLK inputs of 26 MHz based on different HIGHSPEED value.

BAUD	HIGHSPEED = 0	HIGHSPEED = 1	HIGHSPEED = 2
110	14773	29545	59091
300	5417	14773	29545
1200	1354	5417	14773
2400	677	1354	5417
4800	339	677	1354
9600	169	339	667
19200	85	169	339
38400	42	85	169
57600	28	42	85
115200	14	28	42
230400	7	14	28
460800	*	7	14
921600	*	*	7

Table 30 Divisor needed to generate a given baud rate from 26 MHz based on different HIGHSPEED value

The table below shows the divisor needed to generate a given baud rate from CLK inputs of 52MHz based on different HIGHSPEED value.

BAUD	HIGHSPEED = 0	HIGHSPEED = 1	HIGHSPEED = 2
110	29545	59091	118182
300	10833	29545	59091
1200	2708	10833	29545

2400	1354	2708	10833
4800	677	1354	2708
9600	339	677	1354
19200	169	339	677
38400	85	169	339
57600	56	85	169
115200	28	56	85
230400	14	28	56
460800	7	14	28
921600	*	7	14

Table 31 Divisor needed to generate a given baud rate from 52 MHz based on different HIGHSPEED value

UARTn+0028h SAMPLE_COUNT

UARTn_SAMPLE_COUN

+

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
Name									SAMPLECOUNT [7:0]										
Type									R/W										
Reset									0										

When HIGHSPEED=3, the sample_count is the threshold value for UART sample counter (sample_num).

Count from 0 to sample count. For example: If you want to divide by 13, this value should be set to 12.

UARTn+002C

h

SAMPLE_POINT

UARTn_SAMPLE_POIN

T

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name											SAI	MPLEP	OINT [7:0]			
Type									R/W								
Reset									Ffh								

When HIGHSPEED=3, UART gets the input data when sample count=sample num.

e.g. system clock = 13MHz, 921600 = 13000000 / 14

sample_count = 14 and sample point = 7 (sample the central point to decrease the inaccuracy)

The SAMPLE POINT is usually (SAMPLE COUNT/2).

UARTn+0030h AUTOBAUD_REG

UARTn_AUTOBAUD_RE

G

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									BAUD_STAT[3:0]				В	AUDR	ATE[3:	0]
Type									RO					R	0	
Reset									0			•		()	_

BAUD_RATE Autobaud baud rate

- 0 115200
- **1** 57600
- **2** 38400
- **3** 19200
- 4 9600
- **5** 4800
- **6** 2400

- 7 1200
- 8 300
- 9 110

BAUDSTAT Autobaud format

- Autobaud is detecting
- 1 AT_7N1
- 2 AT_7O1
- **3** AT 7E1
- 4 AT 8N1
- **5** AT_8O1
- **6** AT_8E1
- 7 at 7N1
- 8 at_7E1
- 9 at_7O1
- **10** at_8N1
- **11** at 8E1
- **12** at 8O1
- **13** Autobaud detection fails

UARTn+0034h Rate Fix Address

UARTN RATEFIX AD

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name													REST RICT	FREQ _SEL	AUTO BAUD _RAT E_FIX	RXTE_ FIX
Type													R/W	R/W	R/W	R/W
Reset													0	0	0	0

RATE_FIX When you set "rate_fix" (34H[0]), you can transmit and receive data only if

1) the

f13m_en is enable and the freq_sel (34H[2]) is set to 1, or

2) the f26m_en is enable and the freq_sel (34H[2]) is set to 0.

AUTOBAUD_RATE_FIX When you set "autobaud_rate_fix" (34H[1]), you can tx/rx the autobaud packet only if

- 1) the f13m_en is enable and the freq_sel (34H[2]) is set to 1, or
- 2) the f26m_en is enable and the freq_sel (34H[2]) is set to 0.

FREQ_SEL

- Select f26m_en for rate_fix and autobaud_rate_fix
- 1 Select f13m_en for rate_fix and autobaud_rate_fix

RESTRICT

The "restrict" (34H[3]) is used to set a more condition for the autobaud fsm starting point

UARTn+0038h AUTOBAUDSAMPLE

UARTn_AUTOBAUDSA

MPLE

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Name										AUTOBAUDSAMPLE								
Type										R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset										dh								

Since the system clock may change, autobaud sample duration should change as system clock changes.

When system clock = 13MHz, autobaudsample = 6; when system clock = 26MHz, autobaudsample = 13.

UARTn+003C

Guard time added register

UARTn_GUARD

h

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												GUARD_ EN	GI	JARD_	CNT[3	:0]
Type												R/W	R/W	R/W	R/W	R/W
Reset												0	0	0	0	0

GUARD_CNT Guard interval count value. Guard interval = (1/(system clock / div_step / div)) * GUARD_CNT. **GUARD_EN** Guard interval add enable signal.

- No guard interval added.
- 1 Add guard interval after stop bit.

UARTn+0040h Escape character register

UARTH ESCAPE DAT

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
Name									ESCAPE_DAT[7:0]										
Type									R/W										
Reset									FFh										

ESCAPE_DAT Escape character added before software flow control data and escape character, i.e. if tx data is xon (31h), with esc en =1, uart transmits data as esc + CEh (\sim xon).

UARTn+0044h Escape enable register

UARTn_ESCAPE_EN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																ESC_E N
Туре																R/W
Reset																0

ESC_EN Add escape character in transmitter and remove escape character in receiver by UART.

- O Do not deal with the escape character.
- 1 Add escape character in transmitter and remove escape character in receiver.

UARTn+0048h Sleep enable register

UARTH SLEEP EN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																SELL P_EN
Type																R/W
Reset																0

SLEEP_EN For sleep mode issue

- O Do not deal with sleep mode indicate signal
- 1 To activate hardware flow control or software control according to software initial setting when chip enters sleep mode. Releasing hardware flow when chip wakes up; but for software control, uart sends xon when awaken and when FIFO does not reach threshold level.

UARTn+004C

h

Virtual FIFO enable register

UARTn_VFIFO_EN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																VFIF O_EN
Type																R/W
Reset																0

VFIFO EN Virtual FIFO mechanism enable signal.

- O Disable VFIFO mode.
- 1 Enable VFIFO mode. When virtual mode is enabled, the flow control is based on the DMA threshold, and generates a timeout interrupt for DMA.

UARTn+0050h Rx Trigger Address

UARTn_RXTRI_ AD

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														RXTRI	G[3:0]	
Type													RXTRIG[3:0] R/W			
Reset														()	

RXTRIG When {rtm,rtl}=2'b11, The Rx FIFO threshold will be Rxtrig.

4.10 IrDA Framer

4.10.1 General Description

IrDA framer, which is depicted in **Figure 48**, is implemented to reduce the CPU loading for IrDA transmission. IrDA framer functional block can be divided into two parts: the transmitting part and the receiving part. In the transmitter, it will perform BOFs addition, byte stuffing, the addition of 16-bits FCS, and EOF appendence. In the receiving part, it will execute BOFs removal, ESC character removal, CRC checking, and EOF detection. In addition, the framer will perform 3/16 modulation and demodulation to connect to the IR transceiver. The transmitter and receiver all need DMA channel.

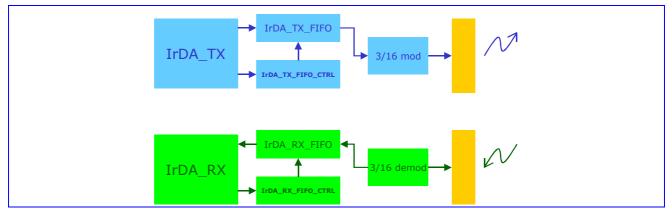


Figure 48 IrDA framer functional block

4.10.2 Register Definitions

IRDA+0000h TX BUF and RX BUF

BUF

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												BUF	[7:0]			
Type												R/	W			
Reset										•		()	•		•

BUF IrDA Framer transmit or receive data

IRDA+0004h TX BUF and RX BUF clear signal

BUF CLEAR

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Name								CLEAR
Type								R/W
Reset								0

CLEAR When CLEAR=1, the FIFO will be cleared

IRDA+0008h Maximum Turn Around Time

MAX T

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name				MAX_T [13:0]													
Type									R/	W							
Reset									3E8	30h							

MAX_T Maximum turn around time is the maximum time that a station can hold the P/F bit. This parameter along with the baud rate parameter dictates the maximum number of bytes that a station can transmit before giving the line to another station by transmitting a frame with the P/F bit. This parameter is used by one station to indicate the maximum time the other station can send before it must turn the link around. 500ms is the only valid value when the baud rate is less than 115200kbps. The default value is 500ms.

IRDA+000Ch Minimum Turn Around Time

MIN_T

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								MIN_T	[15:0]							
Type								R/	W							
Reset								FD	∃8h							

MIN_T Minimum turn around time, the default value is 10ms. The minimum turn around time parameter deals with the time needed for a receiver to recover following saturation by transmission from the same device. This parameter corresponds to the required time delay between the last byte of the last frame sent by a station and the point at which it is ready to receive the first byte of a frame from another station, i.e. it is the latency for transmit to complete and be ready for receive.

IRDA+0010h

Number of additional BOFs prefixed to the beginning of a frame

BOFS

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									TYPE			В	OFS [6:	:0]		
Type									R/W				R/W			
Reset									0				1011b			

BOFs Additional BOFs number; the additional BOFs parameter indicates the number of additional flags needed at the beginning of every frame. The main purpose of the addition of additional BOFs is to provide a delay at the beginning of each frame for device with long interrupt latency.

TYPE Additional BOFs type

1 BOF = C0h

0 BOF = FFh

IRDA+0014h Baud rate divisor

DIV

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								DIV[15:0]							
Type								R/	W							
Reset			·	·			<u> </u>	55	5h		<u> </u>	<u> </u>				

DIV Transmit or receive rate divider. Rate = System clock frequency / DIV/ 16; the default value = 'h55 when in contention mode.

IRDA+0018h Transmit frame size

TX_FRAME_SIZ

E

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Name						TX_FRAME_SIZE[11:0]												
Type										R/	W							
Reset										40)h							

TX_FRAME_SIZE Transmit frame size; the default value = 64 when in contention mode.

IRDA+001Ch Receiving frame1 size

RX_FRAME1_SI

ZE

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name						RX_FRAME1_SIZE[11:0]											
Type						RO											
Reset						0											

RX_FRAME1_SIZE The actual number of receiving frame1 size.

IRDA+0020h Transmit abort indication

ABORT

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																ABO RT
Type																R/W
Reset																0

ABORT When set 1, the framer will transmit abort sequence and closes the frame without an FCS field or an ending flag.

IRDA+0024h IrDA framer transmit enable signal

TX_EN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name													TX_ON E	TXINVE RT	MODE	TX_E
Type													R/W	R/W	R/W	R/W
Reset													0	0	0	0

TX_EN Transmit enable

MODE Modulation type selection

0 3/16 modulation

1 1.61us

TXINVERT Invert transmit signal

• transmit signal is not inverted

1 inverts transmit signal

TX_ONE: Control the tranmit enable signal is one hot or not

0 tx en will not be de-asserted until software programs

1 tx_en will be de-asserted (i.e. transmit disabled) automatically after one frame has been sent

IRDA+0028h IrDA framer receive enable signal

RX EN

_								•	•							_
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														RX_ON E	RXINVE RT	RX_E N
Type														R/W	R/W	R/W
Reset														0	0	0

RX_EN Receive enable

RXINVERT Invert receive signal

- receive signal is not inverted
- 1 inverts receive signal

RX_ONE Disable receive when get one frame

- o rx_en will not be de-asserted until software programs
- 1 rx_en will be de-asserted (i.e. transmit disabled) automatically after one frame has been sent

IRDA+002Ch FIFO trigger level indication

TRIGGER

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name													RX_1	RIG[TX_1	TRIG
Type													R/	W	R/	W
Reset													()	()

TX_TRIG The tx FIFO interrupt trigger threshold

00 0 byte

01 1 byte

02 2 byte

RX_TRIG The rx FIFO interrupt trigger threshold

00 1 byte

01 2 byte

02 3 byte

IRDA+0030h IRQ enable signal

IRQ_ENABLE

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				2NDR X_CO MP	RXRE START		FIFOTI MEOU T	TXABO RT	PYARO	MAXTI MEOU T		RXCO MPLET E	I	STATU S	RXTRI G	TXTRI G
Type					R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset					0	0	0	0	0	0	0	0	0	0	0	0

IRQ_ENABLE Interrupt enable signal

- 0 disable
- 1 enable

TXTRIG Transmit data reaches the threshold level

- No interrupt is generated
- 1 Interrupt is generated when transmit FIFO size reaches threshold

RXTRIG Receive data reaches the threshold level

- No interrupt is generated
- 1 Interrupt is generated when receive FIFO size reaches threshold

STATUS Any status lists as following has happened

(overrun, size_error)

- No interrupt is generated
- 1 Interrupt is generated when one of the statuses occurred

TXCOMPLETE Transmit one frame completely

- No interrupt is generated
- 1 Interrupt is generated when transmitting one frame completely

RXCOMPLETE Receive one frame completely

- No interrupt is generated
- 1 Interrupt is generated when receiving one frame completely

MINTIMEOUT Minimum time timeout

- 0 No interrupt is generated
- 1 Interrupt is generated when minimum timer is timed out

MAXTIMEOUT Maximum time timeout

- **0** No interrupt is generated
- 1 Interrupt is generated when maximum timer is timed out

RXABORT Receiving aborting frame

- 0 No interrupt is generated
- 1 Interrupt is generated when receiving aborting frame

TXABORT Transmitting aborting frame

- No interrupt is generated
- 1 Interrupt is generated when transmitting aborting frame

FIFOTIMEOUT FIFO timeout

- 0 No interrupt is generated
- 1 Interrupt is generated when FIFO timeout

THRESHTIMEOUT Threshold time timeout

- **0** No interrupt is generated
- 1 Interrupt is generated when threshold timer is timed out

RXRESTART Receiving a new frame before one frame is received completely

- **0** No interrupt is generated
- 1 Interrupt is generated when receiving a new frame before one frame is received completely

2NDRX_COMP Receiving second frame and get P/F bit

- **0** No interrupt is generated
 - 1 Interrupt is generated when receiving second frame and get P/F bit completely

IRDA+0034h Interrupt Status

IRQ STA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				2NDR X_CO MP	RXRE START	THRE SHTIM EOUT	FIFOTI MEOU T	TXABO RT	RXABO RT	MAXTI MEOU T		RXCO MPLET E		STATU S	RXFIF O	TXFIF O
Type				RC	RC	RC	RC	RC	RC	RC	RC	RC	RC	RC	RC	RC
Reset				0	0	0	0	0	0	0	0	0	0	0	0	0

TXFIFOTransmit FIFO reaches threshold

RXFIFO Receive FIFO reaches threshold

ERROR generated when one of the statuses occurred

(data error, PF detect, fifo hold1, fifo empty, crc fail, frame error, overrun, size error)

TXCOMPLETE Transmitting one frame completely

RXCOMPLETE Receiving one frame completely

MINTIMEOUT Minimum turn around time timeout

MAXTIMEOUT Maximum turn around time timeout

RXABORT Receiving aborting frame

TXABORT Transmitting aborting frame

FIFOTIMEOUT FIFO is timeout

THRESHTIMEOUT Threshold time timeout

RXRESTART Receiving a new frame before one frame is received completely

2NDRX_COMP Receiving second frame and get P/F bit completely

IRDA+0038h STATUS register

STATUS

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name													FIFOHO	FIFO	OVER	RXSIZ
Ivaille													LD1	EMPTY	RUN	E
Type													R/W	R/W	R/W	R/W
Reset													0	0	0	0

RXSIZE Rece

Receive frame size error

OVERRUN Frame over run

FIFOEMPTY FIFO empty

FIFOHOLD1 FIFO holds one

IRDA+003Ch Transceiver power on/off control

TRANSCEIVER PDN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																TRANS_ PDN
Туре																R/W
Reset																1

Transceiver_PDN Power on/off control for external IrDA transceiver

IRDA+0040h Maximum number of receiving frame size

RX_FRAME_MA

Y

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									MAX_	RX_FR	AME_	SIZE_				
Type										R/	W					
Reset											0					

RX_FRAME_MAX Receive frame max size, when actual receiving frame size is larger than rx_frame_max, RXSIZE is

asserted.

IRDA+0044h Threshold Time

THRESH T

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	DISCONNECT_TIME[15:0]															
Type								R/	W							
Reset		<u> </u>	<u> </u>			·	<u> </u>	bb	8h	<u> </u>						

THRESHOLD TIME Threshold time; it's used to control the time a station will wait without receiving valid frame before it disconnects the link. Associated with this is the time a station will wait without receiving valid frames before it will send a status indication to the service user layer.

IRDA+0048h Counter enable signal

COUNT_ENABL

Ε

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														THRESH _EN	MIN_E N	MAX_ EN
Туре														R/W	R/W	R/W
Reset														0	0	0

COUNT_ENABLE Counter enable signals

IRDA+004Ch Indication of system clock rate

CLOCK_RATE

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name															CLOCK	_RA
Туре															R/V	V
Reset															0	

CLOCK_RATE Indication of the system clock rate

- 0 26MHz
- 1 52MHz
- 2 13MHz

IRDA+0050h System Clock Rate Fix

RATE_FIX

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																RATE _FIX
Type																R/W
Reset																0

RATE_FIX Fix irda framer sample base clock rate as 13MHz

- clock rate base on clock rate selection
- 1 13MHz

IRDA+0054h RX Frame1 Status

FRAME1_STAT

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name													UNKNO W_ERRO R	PF_DET ECT	CRC_FAI	FRAME_ ERROR
Type													R/W	R/W	R/W	R/W
Reset													0	0	0	0

FRAME_ERROR Framing error, i.e. stop bit = 0

- 0 No framing error
- 1 Framing error occurred

CRC_FAIL CRC check fail

- O CRC check successfully
- 1 CRC check fail

PF DETECT P/F bit detect

- No a P/F bit frame
- 1 Detect P/F bit in this frame

UNKNOWN_ERROR Receiving error data i.e. escape character is followed by a character that is not an esc, bof, or eof character.

- O Data received correctly
- 1 Unknown error occurred

IRDA+0058h RX Frame2 Status

FRAME2_STAT

US

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name													UNKNO W_ERRO R	PF_DET ECT	CRC_FAI	FRAME_ ERROR
Type													R/W	R/W	R/W	R/W
Reset													0	0	0	0

FRAME_ERROR Framing error, i.e. stop bit = 0

- No framing error
- 1 Framing error occurred

CRC_FAIL CRC check fail

- O CRC check successfully
- 1 CRC check fail

PF DETECT P/F bit detect

- O No a P/F bit frame
- 1 Detect P/F bit in this frame

UNKNOWN_ERROR Receiving error data i.e. escape character is followed by a character that is not an esc, bof, or eof character.

- Data receiving correctly
- 1 Unknown error occurred

IRDA+005Ch Receiving frame2 size

RX_FRAME2_SI ZE

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
Name						RX_FRAME2_SIZE[11:0]													
Type						RO RO													
Reset							•		•	()				•	_			

RX_FRAME2_SIZE The actual number of receiving frame2 size.

4.11 Real Time Clock

4.11.1 General Description

The Real Time Clock (RTC) module provides time and data information. The clock is based on a 32.768KHz oscillator with an independent power supply. When the mobile handset is powered off, a dedicated regulator supplies the RTC block. If the main battery is not present, a backup supply such as a small mercury cell battery or a large capacitor is used. In addition to providing timing data, an alarm interrupt is generated and can be used to power up the baseband core via the BBWAKEUP pin. Regulator interrupts corresponding to seconds, minutes, hours and days can be generated whenever the time counter value reaches a maximum value (e.g., 59 for seconds and minutes, 23 for hours, etc.). The year span is supported up to 2127. The maximum day-of-month values, which depend on the leap year condition, are stored in the RTC block.

4.11.2 Register Definitions

RTC+0000h Baseband power up

RTC_BBPU

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				KEY_	BBPU								AUTO	BBPU	WRITE_E N	PWRE N
Type				V	V								R/W	R/W	R/W	R/W

KEY_BBPU A bus write is acceptable only when KEY BBPU=0x43.

AUTO Controls if BBWAKEUP is automatically in the low state when SYSRST# transitions from high to low.

- BBWAKEUP is not automatically in the low state when SYSRST# transitions from high to low.
- 1 BBWAKEUP is automatically in the low state when SYSRST# transitions from high to low.

BBPU Controls the power of PMIC. If powerkey1=A357h and powerkey2=67D2h, PMIC takes on the value programmed by software; otherwise PMIC is low.

- O Power down
- 1 Power on

WRITE_EN When WRITE_EN is set to 0 by the software program, the RTC write interface is disabled until another system power on. This is equivalent to RTC_debounce_counter_clear_b signal. In most cases, you should write this bit same as BBPU.

PWREN

- **0** RTC alarm has no action on power switch.
- 1 When an RTC alarm occurs, BBPU is set to 1, and the system powers on by RTC alarm wakeup.

RTC+0004h RTC IRQ status

RTC_IRQ_STA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name															TCST A	ALST A
Type															R/C	R/C

ALSTA This register indicates the IRQ status and whether or not the alarm condition has been met.

- **0** No IRQ occurred; the alarm condition has not been met.
- 1 IRO occurred; the alarm condition has been met.

TCSTA This register indicates the IRQ status and whether or not the tick condition has been met.

- **0** No IRQ occurred; the tick condition has not been met.
- 1 IRQ occurred; the tick condition has been met.

RTC+0008h RTC IRQ enable

RTC_IRQ_EN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	WING													ONESH OT	TC_E N	AL_E N
Туре	R/O													R/W	R/W	R/W

ONESHOT Controls automatic reset of AL EN and TC EN.

AL_EN This register enables the control bit for IRQ generation if the alarm condition has been met.

- O Disable IRQ generation.
- 1 Enable the alarm time match interrupt. Clear the interrupt when ONESHOT is high upon generation of the corresponding IRQ.

TC_EN This register enables the control bit for IRQ generation if the tick condition has been met.

- Disable IRQ generation.
- 1 Enable the tick time match interrupt. Clear the interrupt when ONESHOT is high upon generation of the corresponding IRQ.

WING This bit indicates that RTC is still writing to this register.

RTC+000Ch Counter increment IRQ enable

RTC_CII_EN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	WING						1/8SEC CII	1/4SEC CII	1/2SEC CII	YEAC II	MTHC	DOW CII	DOM CII	HOUC	MINCI	SECC
Type	R/O						R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

This register activates or de-activates the IRQ generation when the TC counter reaches its maximum value.

SECCII Set this bit to 1 to activate the IRQ at each second update.

MINCII Set the bit to 1 to activate the IRQ at each minute update.

HOUCIISet the bit to 1 to activate the IRQ at each hour update.

DOMCII Set the bit to 1 to activate the IRQ at each day-of-month update.

DOWCII Set the bit to 1 to activate the IRQ at each day-of-week update.

MTHCII Set the bit to 1 to activate the IRQ at each month update.

YEACII Set the bit to 1 to activate the IRQ at each year update.

1/2SECCII Set the bit to 1 to activate the IRQ at each one-half of a second update.

1/4SECCII Set the bit to 1 to activate the IRQ at each one-fourth of a second update.

1/8SECCII Set the bit to 1 to activate the IRQ at each one-eighth of a second update.

WING This bit indicates RTC is still writing to this register.

RTC+0010h RTC alarm mask

RTC_AL_MASK

_																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Name	WING					YEA_M SK	MTH_M SK	DOW_M SK	DOM_M SK	HOU_M SK	MIN_M SK	SEC_M SK
Type	R/O					R/W						

The alarm condition for alarm IRQ generation depends on whether or not the corresponding bit in this register is masked. Warning: If you set all bits 1 in RTC_AL_MASK (i.e. RTC_AL_MASK=0x7f) and PWREN=1 in RTC_BBPU, it means alarm comes EVERY SECOND, not disabled.

SEC_MSK

- Condition (RTC_TC_SEC = RTC_AL_SEC) is checked to generate the alarm signal.
- 1 Condition (RTC_TC_SEC = RTC_AL_SEC) is masked, i.e. the value of RTC_TC_SEC does not affect the alarm IRQ generation.

MIN_MSK

- Condition (RTC_TC_MIN = RTC_AL_MIN) is checked to generate the alarm signal.
- 1 Condition (RTC_TC_MIN = RTC_AL_MIN) is masked, i.e. the value of RTC_TC_MIN does not affect the alarm IRQ generation.

HOU_MSK

- Condition (RTC_TC_HOU = RTC_AL_HOU) is checked to generate the alarm signal.
- 1 Condition (RTC_TC_HOU = RTC_AL_HOU) is masked, i.e. the value of RTC_TC_HOU does not affect the alarm IRQ generation.

DOM_MSK

- Condition (RTC_TC_DOM = RTC_AL_DOM) is checked to generate the alarm signal.
- 1 Condition (RTC_TC_DOM = RTC_AL_DOM) is masked, i.e. the value of RTC_TC_DOM does not affect the alarm IRQ generation.

DOW MSK

- O Condition (RTC TC DOW = RTC AL DOW) is checked to generate the alarm signal.
- 1 Condition (RTC_TC_DOW = RTC_AL_DOW) is masked, i.e. the value of RTC_TC_DOW does not affect the alarm IRQ generation.

MTH MSK

- Condition (RTC_TC_MTH = RTC_AL_MTH) is checked to generate the alarm signal.
- 1 Condition (RTC_TC_MTH = RTC_AL_MTH) is masked, i.e. the value of RTC_TC_MTH does not affect the alarm IRQ generation.

YEA_MSK

- O Condition (RTC TC YEA = RTC AL YEA) is checked to generate the alarm signal.
- 1 Condition (RTC_TC_YEA = RTC_AL_YEA) is masked, i.e. the value of RTC_TC_YEA does not affect the alarm IRQ generation.

WING This bit indicates RTC is still writing to this register.

RTC+0014h RTC seconds time counter register

RTC TC SEC

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name	WING											TC_SECOND					
Type	R/O												R/	W			

TC_SECOND The second initial value for the time counter. The range of its value is: 0-59.

WING This bit indicates RTC is still writing to this register.

RTC+0018h RTC minutes time counter register

RTC TC MIN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	WING															
Type	R/O												R/	W		

TC MINUTE The minute initial value for the time counter. The range of its value is: 0-59.

WING This bit indicates RTC is still writing to this register.

RTC+001Ch RTC hours time counter register

RTC_TC_HOU

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Name	WING																	
Type	R/O													R/W				

TC_HOUR The hour initial value for the time counter. The range of its value is: 0-23.

WING This bit indicates RTC is still writing to this register.

RTC+0x0020 RTC day-of-month time counter register

RTC_TC_DOM

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Name	WING												7C_DOM R/W					
Type	R/O											IC_DOM						

TC_DOM The day-of-month initial value for the time counter. The day-of-month maximum value depends on the leap year condition, i.e. 2 LSB of year time counter are zeros.

WING This bit indicates RTC is still writing to this register.

RTC+0x0024 RTC day-of-week time counter register

RTC_TC_DOW

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name	WING													TC_DOW RW			
Type	R/O													IC_DOW			

TC_DOW The day-of-week initial value for the time counter. The range of its value is: 1-7.

WING This bit indicates RTC is still writing to this register.

RTC+0x0028 RTC month time counter register

RTC_TC_MTH

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	WING													TC_M	ONTH	
Type	R/O													R/	W	

TC_MONTH The month initial value for the time counter. The range of its value is: 1-12.

WING This bit indicates RTC is still writing to this register.

RTC+0x002C RTC year time counter register

RTC_TC_YEA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	WING											AL	SECO	ND		
Type	R/O												R/W			

TC_YEAR The year initial value for the time counter. The range of its value is: 0-127. (2000-2127)

WING This bit indicates RTC is still writing to this register.

RTC+0x0030 RTC second alarm setting register

RTC_AL_SEC

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	WING												AL_SE	COND		
Type	R/O											•	R/	W	•	

AL_SECOND The second value of the alarm counter setting. The range of its value is: 0-59.

WING This bit indicates RTC is still writing to this register.

RTC+0x0034 RTC minute alarm setting register

RTC_AL_MIN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	WING												AL_MI	NUTE		
Type	R/O												R/	W		

AL_MINUTE The minute value of the alarm counter setting. The range of its value is: 0-59.

WING This bit indicates RTC is still writing to this register.

RTC+0x0038 RTC hour alarm setting register

RTC_AL_HOU

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	WING												A	L_HOU	R	
Type	R/O													R/W		

AL_HOUR The hour value of the alarm counter setting. The range of its value is: 0-23.

WING This bit indicates RTC is still writing to this register.

RTC+0x003C RTC day-of-month alarm setting register

RTC_AL_DOM

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Name	WING												AL_DOM					
Type	R/O													R/W				

AL_DOM The day-of-month value of the alarm counter setting. The day-of-month maximum value depends on the leap year condition, i.e. 2 LSB of year time counter are zeros.

WING This bit indicates RTC is still writing to this register.

RTC+0x0040 RTC day-of-week alarm setting register

RTC_AL_DOW

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name	WING													A	L_DOV	٧	
Type	R/O													AL_DOW R/W			

AL_DOW The day-of-week value of the alarm counter setting. The range of its value is: 1-7.

WING This bit indicates RTC is still writing to this register.

RTC+0x0044 RTC month alarm setting register

RTC_AL_MTH

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	WING													AL_M	ONTH	
Type	R/O													R/	W	

AL_MONTH The month value of the alarm counter setting. The range of its value is: 1-12.

WING This bit indicates RTC is still writing to this register.

RTC+0x0048 RTC year alarm setting register

RTC_AL_YEA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name	WING									AL_YEAR							
Type	R/O												R/W				

AL_YEAR The year value of the alarm counter setting. The range of its value is: 0-127. (2000-2127)

WING This bit indicates RTC is still writing to this register.

RTC+0050h RTC_POWERKEY1 register

RTC_POWERK

EY₁

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		RTC_POWERKEY1														
Type								R/	W							

RTC+0054h RTC_POWERKEY2 register

RTC_POWERK

EY2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		RTC_POWERKEY2														
Type								R/	W							

These register sets are used to determine if the real time clock has been programmed by software; i.e. the time value in real time clock is correct. When the real time clock is first powered on, the register contents are all undefined, therefore the time values shown are incorrect. Software needs to know if the real time clock has been programmed. Hence, these two registers are defined to solve this power-on issue. After software programs the correct value, these two register sets do not need to be updated. In addition to programming the correct time value, when the contents of these register sets are wrong, the interrupt is not generated. Therefore, the real time clock does not generate the interrupts before the software programs the registers; unwanted interrupt due to wrong time value do not occur. The correct values of these two register sets are:

RTC_POWERKEY1 A357h RTC_POWERKEY2 67D2h

RTC+0058h PDN1

RTC_PDN1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name	WING	DBIN G							RTC_PDN1[7:0]								
Type	R/O	R/O										R/	W				

RTC_PDN1[3:1] is for reset de-bounce mechanism.

- 0 2ms
- 1 8ms
- **2** 32ms
- **3** 128ms
- 4 256ms
- 5 512ms
- 6 1024ms
- **7** 2048ms

RTC_PDN1[7:4] & RTC_PDN1[0] is the spare register for software to keep power on and power off state information.

DBING This bit indicates RTC is still de-bouncing.

WING This bit indicates RTC is still writing to this register.

RTC+005Ch PDN2

RTC_PDN2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	WING										R	RTC_PE	N2[7:0)]		
Type	R/O											R/	W			

RTC_PDN2 The spare register for software to keep power on and power off state information.

WING This bit indicates RTC is still writing to this register.

RTC+0060h RTC writing completed flag

RTC_WOK

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														WING 3	WING 2	WING 1
Туре														R/O	R/O	R/O

WING1 This bit indicates RTC is still writing POWERKEY1.

WING2 This bit indicates RTC is still writing POWERKEY2.

WING3 This bit indicates RTC is still writing BBPU.

RTC+0064h Spare register for specific purpose

RTC_SPAR

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								RTC_	SPAR							

Type R/W

RTC_SPAR These registers are reserved for specific purpose.

4.12 Auxiliary ADC Unit

The auxiliary ADC unit is used to monitor the status of battery and charger, identify the plugged peripheral, and perform temperature measurement. There provides 7 input channels for diversified application in this unit.

There provides 2 modes of operation: immediate mode and timer-triggered mode. The mode of each channel can be individually selected through register AUXADC_CON0. For example, if the flag SYN0 in the register AUXADC_CON0 is set, the channel 0 will be set in timer-triggered mode. Otherwise, it's in immediate mode.

In immediate mode, the A/D converter will sample the value once only when the flag in the register AUXADC_CON1 has been set. For example, if the flag IMM0 in the register AUXADC_CON1 is set, the A/D converter will sample the data for channel 0. The IMM flags should be cleared and set again to initialize another sampling.

The value sampled for the channel 0 will be stored in register AUXADC_DAT0, the value for the channel 1 will be stored in register AUXADC_DAT1, and vice versa.

If the AUTOSET flag in the register AUXADC_CON3 is set, the auto-sample function is enabled. The A/D converter will sample the data for the channel in which the corresponding data register has been read. For example, in case the SYN1 flag is not set, the AUTOSET flag is set, when the data register AUXADC_DAT0 has been read, the A/D converter will sample the next value for the channel 1 immediately.

If multiple channels are selected at the same time, the task will be performed sequentially on every selected channel. For example, if we set AUXADC_CON1 to be 0x7f, that is, all 7 channels are selected, the state machine in the unit will start sampling from channel 6 to channel 0, and save the values of each input channel in the respective registers. The same process also applies in the timer-triggered mode.

In timer-triggered mode, the A/D converter will sample the value for the channels in which the corresponding SYN flags are set when the TDMA timer counts to the value specified in the register TDMA_AUXEV1, which is placed in the TDMA timer. For example, if we set AUXADC_CON0 to be 0x7f, all 7 channels are selected to be in timer-triggered mode. The state machine will make sampling for all 7 channels sequentially and save the values in registers from AUXADC_DAT0 to AUXADC_DAT6, as it does in immediate mode.

There provides a dedicated timer-triggered scheme for channel 0. The scheme is enabled by setting the SYN7 flag in the register AUXADC_CON2. The timing offset for this event is stored in the register TDMA_AUXEV0 in the TDMA timer. The sampled data triggered by this specific event is stored in the register AUXADC_DAT7. It's used to separate the results of two individual software routines that perform action on the auxiliary ADC unit.

The AUTOCLRn in the register AUXADC_CON3 is set when it's intended to sample only once after setting timer-triggered mode. If AUTOCLR1 flag has been set, after the data for the channels in timer-triggered mode has been stored, the SYNn flags in the register AUXADC_CON0 will be cleared. Instead, if AUTOCLR0 flag has been set, after the data for the channel 0 has been stored in the register AUXADC_DAT7, the SYN7 flag in the register AUXADC CON2 will be cleared.

The usage of the immediate mode and timer-triggered mode are mutual exclusive in terms of individual channel.

The PUWAIT_EN bit in the registers AUXADC_CON3 is used to power up the analog port in advance. That ensures that the power has ramped up to the stable state before A/D converter starts the conversion. The analog part will be automatically powered down after the conversion is completed.

4.12.1 Register Definitions

AUXADC+000

Oh Auxiliary ADC control register 0

AUXADC CON0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										SYN6	SYN5	SYN4	SYN3	SYN2	SYN1	SYN0
Type										R/W						
Reset										0	0	0	0	0	0	0

SYNn Those 7 bits define whether the corresponding channel is to be sampled or not in timer-triggered mode. It's associated with timing offset register TDMA_AUXEV1. It's supported to set multiple flags. The flags can be automatically clearly after those channel have been sampled if AUTOCLR1 in the register AUXADC_CON3 is set.

- The channel is not selected.
- 1 The channel is selected.

AUXADC+000

4h

Auxiliary ADC control register 1

AUXADC_CON1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										IMM6	IMM5	IMM4	IMM3	IMM2	IMM1	IMM0
Type										R/W						
Reset										0	0	0	0	0	0	0

IMM*n* Those 7 bits are set individually to sample the data for the corresponding channel. It's supported to set multiple flags.

- The channel is not selected.
- 1 The channel is selected.

AUXADC+000

8h

Auxiliary ADC control register 2

AUXADC_CON2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																SYN7
Type																R/W
Reset																0

SYN7 This bit is used only for channel 0 and to be associated with timing offset register TDMA_AUXEV0 in the TDMA timer in timer-triggered mode. The flag can be automatically clearly after channel 0 have been sampled if AUTOCLR0 in the register AUXADC_CON3 is set.

- The channel is not selected.
- 1 The channel is selected.

AUXADC+000

Ch Auxiliary ADC control register 3

AUXADC_CON3

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	AUTO SET				PUW AIT_E N			AUTO CLR0								STA
Type	R/W				R/W		R/W	R/W								RO
Reset					0		0	0			_					0

AUTOSET The field defines the auto-sample mode of the module. In auto-sample mode, each channel with its sample register being read can start sampling immediately without configuring the control register AUXADC_CON1 again.

PUWAIT_EN The field enables the power warm-up period to ensure power stability before the SAR process take place. It's recommended to activate.

- The mode is not enabled.
- 1 The mode is enabled.

AUTOCLR1 The field defines the auto-clear mode of the module for event 1. In auto-clear mode, each timer-triggered channel get the samples of the specified channels once after the SYNn bit in the register AUXADC_CON0 have been set. The SYNn bits will be automatically be cleared and the channel will not being enabled again by the timer event except the SYNn flags are set again.

- The automatic clear mode is not enabled.
- 1 The automatic clear mode is enabled.

AUTOCLR0 The field defines the auto-clear mode of the module for event 0. In auto-clear mode, the timer-triggered channel 0 get the sample once after the SYN7 bit in the register AUXADC_CON2 have been set. The SYN7 bit will be automatically cleared and the channel will not be enabled again by the timer event 0 except the SYN7 flag is set again.

- The automatic clear mode is not enabled.
- 1 The automatic clear mode is enabled.

STA The field defines the state of the module.

- **0** This module is idle.
- 1 This module is busy.

AUXADC+001 0h

Auxiliary ADC channel 0 register

AUXADC_DAT0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							DAT									
Type											R	0				
Reset											()				

The register stores the sampled data for the channel 0. There are 8 registers of the same type for the corresponding channel. The overall register definition is listed in **Table 32**.

Register Address	Register Function	Acronym
AUXADC+0010h	Auxiliary ADC channel 0 data register	AUXADC_DAT0
AUXADC+0014h	Auxiliary ADC channel 1 data register	AUXADC_DAT1
AUXADC+0018h	Auxiliary ADC channel 2 data register	AUXADC_DAT2
AUXADC+001Ch	Auxiliary ADC channel 3 data register	AUXADC_DAT3
AUXADC+0020h	Auxiliary ADC channel 4 data register	AUXADC_DAT4
AUXADC+0024h	Auxiliary ADC channel 5 data register	AUXADC_DAT5
AUXADC+0028h	Auxiliary ADC channel 6 data register	AUXADC_DAT6
AUXADC+002Ch	Auxiliary ADC channel 0 data register for TDMA event 0	AUXADC_DAT7

Table 32 Auxiliary ADC data register list

4.13 I2C / SCCB Controller

4.13.1 General Description

I2C (Inter-IC) /SCCB (Serial Camera Control Bus) is a two-wire serial interface. The two signals are SCL and SDA. SCL is a clock signal that is driven by the master. SDA is a bi-directional data signal that can be driven by either the master or the slave. This generic controller supports the master role and conforms to the I2C specification.

4.13.1.1 Feature Support

I2C compliant master mode operation

Adjustable clock speed for LS/FS mode operation.

7bit/10 bit addressing support.

High Speed mode support.

Slave Clock Extension support.

START/STOP/REPEATED START condition

Manual/DMA Transfer Mode

Multi write per transfer (up to 8 data bytes for non dma mode and 255 data bytes for dma mode)

Multi read per transfer (up to 8 data bytes for non dma mode and 255 data bytes for dma mode)

Multi transfer per transaction (up to 256 write transfers or 256 read transfers with dma mode)

DMA mode with Fifo Flow Control and bus signal holding

Combined format transfer with length change capability.

Active drive / wired-and I/O configuration

4.13.1.2 Manual/DMA Transfer Mode

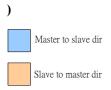
The controller offers 2 types of transfer mode, Manual and DMA.

When Manual mode is selected, in addition to the slave address register, the controller has a built-in 8byte deep FIFO which allows mu to prepare up to 8 bytes of data for a write transfer, or read up to 8 bytes of data for a read transfer.

When DMA mode is enabled, the data to and from the FIFO is controlled via DMA transfer and can therefore support up to 255 bytes of consecutive read or write, with the data read from or write to another memory space. When DMA mode is enabled, flow control mechanism is also implemented to hold the bus clk when FIFO underflow or overflow condition is encountered.

4.13.1.3 Transfer format support

This controller has been designed to be as generic as possible in order to support a wide range of devices that may utilize different combinations of transfer formats. Here are the transfer format types that can be supported through different software configuration:


(Wording convention note:

transfer = anything encapsulated within a Start and Stop or Repeated Start.

transfer length = the number of bytes within the transfer.

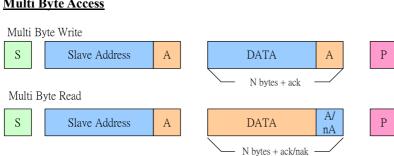
transaction = this is the top unit. Everything combined equals 1 transaction.

Transaction length = the number of transfers to be conducted.

Single Byte Access

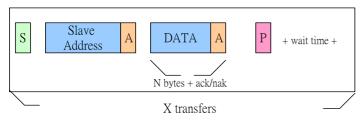
S

Single Byte Write


DATA

nA

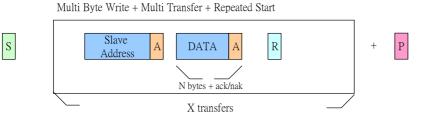
Α

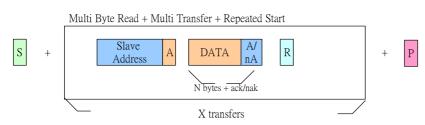

Multi Byte Access

Slave Address



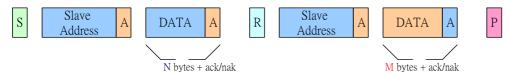
Multi Byte Transfer + Multi Transfer (same direction)


Multi Byte Write + Multi Transfer

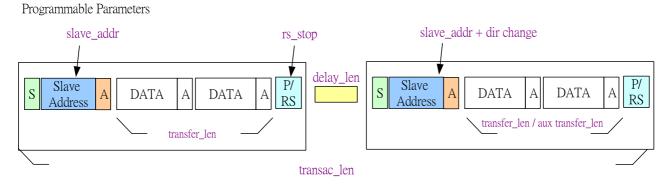


Multi Byte Read + Multi Transfer

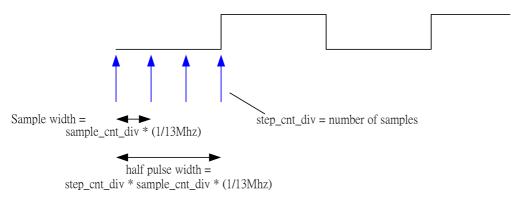
Multi Byte Transfer + Multi Transfer w RS (same direction)



Combined Write/Read with Repeated Start (direction change)


(Note: Only supports Write and then Read sequence. Read and then Write is not supported)

Combined Multi Byte Write + Multi Byte Read



4.13.2 Programming Examples

Common Transfer Programmable Parameters

Output Waveform Timing Programmable Parameters

4.13.3 Register Definitions

12CREG+0000 h Data Port Register

DATA PORT

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												FIFO	DATA			
Type												R/	W			
Reset												C)			

DATA_PORT[7:0] This is the FIFO access port. During master write sequences (slave_addr[0] = 0), this port can be written by APB, and during master read sequences (slave_addr[0] = 1), this port can be read by APB.

(NOTE) Slave addr must be set correctly before accessing the fifo.

(DEBUG ONLY) If the fifo_apb_debug bit is set, then the FIFO can be read and write by the

APB

h

h

I2CREG+0004

Slave Address Register

SLAVE_ADDR

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												SLAVE	ADDF	2		
Type												R/	W			
Reset												()			

SLAVE_ADDR [7:0] This specifies the slave address of the device to be accessed. Bit 0 is defined by the I2C protocol as a bit that indicates the direction of transfer. 1 = master read, 0 = master write.

I2CREG+0008

Interrupt Mask Register

INTR_MASK

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name													DEBU G	HS_N ACKE R	ACKE RR	TRAN SAC_ COM P
Type													R.W	R/W	R/W	R/W
Reset													1	1	1	1

This register provides masks for the corresponding interrupt sources as indicated in intr stat register.

1 = allow interrupt

0 = disable interrupt

Note: while disabled, the corresponding interrupt will not be asserted, however the intr_stat will still be updated with the status. Ie. mask does not affect intr_stat register values.

I2CREG+000C

h

Interrupt Status Register

INTR_STAT

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														HS_N ACKE RR	ACKE RR	TRAN SAC_ COM P
Type														W1C	W1C	W1C
Reset														0	0	0

When an interrupt is issued by i2c controller, this register will need to be read by mcu to determine the cause for the interrupt. After this status has been read and appropriate actions are taken, the corresponding interrupt source will need to be write 1 cleared.

HS_NACKERR This status is asserted if hs master code nack error detection is enabled. If enabled, hs master code nack err will cause transaction to end and stop will be issued.

ACKERR This status is asserted if ACK error detection is enabled. If enabled, ackerr will cause transaction to end and stop will be issued.

TRANSAC_COMP This status is asserted when a transaction has completed successfully.

I2CREG+0010

h Control Register

CONTROL

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										TRAN SFER _LEN _CHA _NGE	ACKE RR_D ET_E N	DIR_ CHAN GE	CLK_ EXT EN	DMA_ EN	RS_S TOP	

Туре					R/W	R/W	RW	RW	RW	RW	R/W
Reset					0	0	0	0	0	0	0

TRANSFER LEN CHANGEThis options specifies whether or not to change the transfer length after the fist transfer completes. If enabled, the transfers after the first transfer will use the transfer_len_aux parameter.

ACKERR_DET_EN This option enables slave ack error detection. When enabled, if slave ack error is detected, the master shall terminate the transaction by issuing a STOP condition and then asserts ackerr interrupt. Mcu shall handle this case appropriately and then resets the fifo address before reissuing transaction again. If this option is disabled, the controller will ignore slave ack error and keep on scheduled transaction.

> 0 disable

1 enable

DIR_CHANGE

This option is used for combined transfer format, where the direction of transfer is to be changed from write to read after the FIRST RS condition. Note: when set to 1, the transfers after the direction change will be based on the transfer_len_aux parameter.

disable 0

enable

CLK_EXT_EN

I2C spec allows slaves to hold the SCL line low if it is not yet ready for further processing. Therefore, if this bit is set to 1, master controller will enter a high wait state until the slave releases the SCL line.

DMA_EN

By default, this is disabled, and fifo data shall be manually prepared by mcu. This default setting should be used for transfer sizes of less than 8 data bytes and no multiple transfer is configured. When enabled, dma requests are turned on, and the fifo data should be prepared in memory.

RS_STOP

h

In LS/FS mode, this bit affects multi-transfer transaction only. It controls whether or not REPEATED-START condition is used between transfers. The last ending transfer always ends with a STOP.

In HS mode, this bit must be set to 1.

0 use STOP

Transfer)

use REPEATED-START

I2CREG+0014 Transfer Length Register (Number of Bytesper

TRANSFER LE

Ν

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				Т	RANSI	ER_LI	N_AU	X			TI	RANSF	ER_LE	N		
Type						R/W										R/W
Reset						ʻh1										ʻh1

TRANSFER_LEN_AUX[4:0]This field is valid only when dir_change is set to 1. This indicates the number of DATA BYTES to be transferred in 1 transfer unit (excluding slave address byte) for the transfers following the direction change. I.e., if dir_change =1, then the first write transfer length depends on transfer_len, while the second read transfer length depend on transfer_len_aux. Dir change is always after the first transfer.

(NOTE) The value must be set greater than 1, otherwise no transfer will take place.

TRANSFER_LEN[7:0] This indicates the number of DATA BYTES to be transferred in 1 transfer unit (excluding slave address byte)

(NOTE) The value must be set greater than 1, otherwise no transfer will take place.

I2CREG+0018 Transaction Length Register (Number of Transfers h per Transaction)

TRANSAC_LEN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											T	RANS	AC_LE	N		
Type																R/W
Reset																ʻh1

TRANSAC_LEN[7:0] This indicates the number of TRANSFERS to be transferred in 1 transaction

(NOTE) The value must be set greater than 1, otherwise no transfer will take place.

I2CREG+001C

h

h

Inter Delay Length Register

DELAY_LEN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
Name												DELA	_LEN						
Type									R/W										
Reset												'h	2						

DELAY_LEN[3:0]

This sets the wait delay between consecutive transfers when RS_STOP bit is set to 0. (the unit is same as the half pulse width)

I2CREG+0020

Timing Control Register

TIMING

Bit	15	14	13	12	11	10	9	8	7	6	5	4		3	2		1	0
	READ DATA_READ_TIME					SAMP	LE_CN	IT_DIV					STI	EP_(CNT_E	OIV		
Type	R/W		R/W				R/W							R	/W			
Reset	ʻh0		ʻh1				ʻh3							'ł	า3			

LS/FS only. This register is used to control the output waveform timing. Each half pulse width (ie. each high or low pulse) is equal to = step cnt div * (sample cnt div * 1/13Mhz)

SAMPLE_CNT_DIV[2:0] Used for LS/FS only. This adjusts the width of each sample. (sample width = sample_cnt_div * 1/13Mhz)

STEP_CNT_DIV[5:0] This specifies the number of samples per half pulse width (ie. each high or low pulse)

DATA_READ_ADJ When set to 1, data latch in sampling time during master reads are adjusted according to DATA_READ_TIME value. Otherwise, by default, data is latched in at half of the high pulse width point. This value must be set to less or equal to half the high pulse width.

DATA_READ_TIME[2:0] This value is valid only when DATA_READ_ADJ is set to 1. This can be used to adjust so that data is latched in at earlier sampling points (assuming data is settled by then)

I2CREG+0024

Start Register

START

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																STAR T
Type																R/W
Reset																0

START

This register starts the transaction on the bus. It is auto deasserted at the end of the transaction.

h

I2CREG+0030

Fifo Status Register

FIFO_STAT

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		RD_A	ADDR			WR_/	ADDR			FIFO_C	FFSET	Γ			WR_F ULL	RD_E MPTY
Type		R	.0			R	0			R	.0				RO	RO
Reset		()			()			()		0	0	0	0

RD_ADDR[3:0] The current rd address pointer. (only bit [2:0] has physical meaning)

WR_ADDR[3:0] The current wr address pointer. (only bit [2:0] has physical meaning)

FIFO_OFFSET[3:0] wr_addr[3:0] - rd_addr[3:0]

WR_FULL This indicates that the fifo is full.

RD_EMPTY This indicates that the fifo is empty.

I2CREG+0034

h Fifo Thresh Register

FIFO_THRESH

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						TX_TF	RIG_TH	RESH						RX_TI	RIG_TH	IRESH
Type							RW								R/W	
Reset							ʻh7								ʻh0	

DEBUG ONLY.

By default, these values do not need to be adjusted. Note! for RX, no timeout mechanism is implemented. Therefore, RX_trig_thresh must be left at 0, or there would be data left in the fifo that is not fetched by DMA controller.

TX_TRIG_THRESH[2:0] When tx fifo level is below this value, tx dma request is asserted.

RX_TRIG_THRESH[2:0] When rx fifo level is above this value, rx dma request is asserted.

12CREG+0038 h Fifo Address Clear Register

FIFO_ADDR_CL

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 0 **FIFO** Name **ADDR** CR WO Туре 0 Reset

FIFO_ADDR_CLR When written with a 1'b1, a 1 pulse fifo_addr_clr is generated to clear the fifo address to back to 0.

I2CREG+0040 h IO Config Register

IO_CONFIG

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														IO SYNC EN	SDA_I O_CO NFIG	SCL_I O_CO NFIG
Type														R/W	R/W	R/W
Reset														0	0	0

This register is used to configure the I/O for the sda and scl lines to select between normal i/o mode, or open-drain mode to support wired-and bus.

IO_SYNC_ENDEBUG ONLY: When set to 1, scl and sda inputs will be first dual synced by bclk_ck.

This should not be needed. Only reserved for debugging.

SDA_IO_CONFIG 0 normal tristate io mode

1 open-drain mode

SCL_IO_CONFIG 0 normal tristate io mode

1 open-drain mode

I2CREG+0044

h

RESERVED DEBUG Register

DEBUG

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
Type														R/W	R/W	R/W
Reset														0	0	0

NOTE: This register is for DEBUG ONLY. The bits are R/W, do not change the values from the default value.

h High Speed Mode Register

HS

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		HS_S	AMPLE DIV	E_CNT		HS_S	TEP_C V	NT_DI		MAS	TER_C	ODE			HS_N ACKE RR_D ET_E N	HS_E N
Type			R/W				R/W				R/W				R/W	R/W
Reset			0				1				0				1	0

This register contains options for supporting high speed operation features

Each HS half pulse width (ie. each high or low pulse) is equal to = step_cnt_div * (sample_cnt_div * 1/13Mhz)

HS_SAMPLE_CNT_DIV[2:0]When high speed mode is entered after the master code transfer has been completed, the sample width becomes dependent on this parameter.

HS_STEP_CNT_DIV[2:0] When high speed mode is entered after the master code transfer has been completed, the number of samples per half pulse width becomes dependent on this value.

MASTER_CODE[2:0] This is the 3 bit programmable value for the master code to be transmitted.

HS_NACKERR_DET_EN This enables NACKERR detection during the master code transmission. When enabled, if NACK is not received after master code has been transmitted, the transaction will terminated with a STOP condition.

HS_ENThis enables the high speed transaction. (note: rs_stop must be set to 1 as well)

12CREG+0050 h Soft Reset Register

SOFTRESET

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																SOFT _RES _ET
Type																WO
Reset																0

SOFT_RESET

When written with a 1'b1, a 1 pulse soft reset is used as synchronous reset to reset the I2C internal hardware circuits.

h

I2CREG+0064

Debug Status Register

DEBUGSTAT

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												MAST ER_R EAD		ASTER	R_STAT	E
Type										RO	RO	RO		R	О.	
Reset										0	1	0		()	-

BUS_BUSYDEBUG ONLY: valid when bus_detect_en is 1. bus_busy = 1 indicates a start transaction has been detected and no stop condition has been detected yet.

MASTER_WRITE DEBUG ONLY: 1 = current transfer is in the master write dir

MASTER_READ DEBUG ONLY: 1 = current transfer is in the master read dir

MASTER_STATE[3:0] DEBUG ONLY: reads back the current master_state.

h Debug Control Register

DEBUGCTRL

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name															APB_ DEBU G_RD	FIFO_ APB_ DEBU G
Type															WO	R/W
Reset															0	0

APB_DEBUG_RD This bit is only valid when fifo_apb_debug is set to 1. Writing to this register will generate a 1 pulsed fifo apb rd signal for reading the fifo data.

FIFO_APB_DEBUG This is used for trace32 debug purposes. When using trace32, and the memory map is shown, turning this bit on will block the normal apb read access. Apb read access to the fifo is then enabled by writing to apb_debug_rd.

0 disable

1 enable

5 Microcontroller Coprocessors

Microcontroller Coprocessors are designed to run computing-intensive processes in place of the Microcontroller (MCU). These coprocessors especially target timing critical GSM/GPRS Modem processes that require fast response and large data movement. Controls to the coprocessors are all through memory access via the APB.

5.1 Divider

To ease the processing load of the MCU, a divider is employed. The divider can perform signed and unsigned 32bit/32bit division, as well as modulus. The processing time of the divider is from 1 clock cycle to 33 clock cycles, depending on the magnitude of the dividend. Detailed processing times are listed below in Table 33. Table 33 shows two processing times (except for when the dividend is zero) for each range of dividends, depending on whether or not restoration is required during the last step of the division operation.

Table 33: Processing Time for Different Dividend Values

Signed Division		Unsigned Division	
Dividend	Clock Cycles	Dividend	Clock Cycles
0000_0000h	1	0000_0000h	1
0000_00ffh - (-0000_0100h), excluding 0x0000_0000	8 or 9	0000_0001h - 0000_00ffh	8 or 9
0000_ffffh - (-0001_0000h)	16 or 17	0000_0100h - 0000_ffffh	16 or 17
00ff_ffffh - (-0100_0000h)	24 or 25	0001_0000h - 00ff_ffffh	24 or 25
7fff_ffffh - (-8000_0000h)	32 or 33	0100_0000h - ffff_ffffh	32 or 33

When the divider is started by setting the Divider Control Register START bit to 1, DIV_RDY becomes 0; this bit is asserted when the division process is complete. MCU detects this status bit by polling it to know the correct access timing. To simplify polling, only the value of register DIV_RDY is visible while Divider Control Register is being read. Hence, MCU does not need to mask other bits to extract the value of DIV_RDY.

In a GSM/GPRS system, many divisions are executed with constant divisors. Therefore, oft-used constants are stored in the divider to speed up the process. By controlling control bits IS_CNST and CNST_IDX in Divider Control register, a division can be performed without providing a divisor. This omission of a step saves on the time for writing a divisor in and on the instruction fetch time, thus making the process more efficient.

5.1.1 Register Definitions

DIVIDER+000 0h Divider Control Register

DIV_CON

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name														С	NST_ID	X
Type															WO	
Reset										,					0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											IN_CNS T	SIGN			DIV_RD Y	STAR T
Type											WO	WO			RO	WO
Reset											0	1			1	0

START Starts a division operation. Returns to 0 after the division has started.

DIV_RDY

Current status of the divider. Note that when DIV_CON register is read, only the value of DIV_RDY appears; the program does not need to mask other parts of the register to extract the information in DIV_RDY.

- 0 Division is in progress.
- 1 Division is finished

SIGN Indicates a signed or unsigned division operation.

- 0 Unsigned division
- 1 Signed division

IS_CNST

Specifies that an internal constant value should be used as a divisor. If IS_CNST is enabled, the divisor value need not be written, and divider automatically uses the internal constant value instead. The internal constant value used depends on the value of CNST_IDX.

- Normal division. Divisor is written in via APB.
- 1 Using internal constant divisor instead.

CNST_IDX Index of constant divisor.

- 0 divisor = 13
- 1 divisor = 26
- 2 divisor = 51
- 3 divisor = 52
- 4 divisor = 102
- 5 divisor = 104

DIVIDER +0004h

Divider Dividend register

DIV_DIVIDEND

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							DI	VIDEN	D[31:1	<u>6]</u>						
Type								W	0							
Reset								()							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							D	IVIDEN	ND[15:0)]						
Type								W	0							
Reset								()							

Dividend.

DIVIDER

+0008h

Divider Divisor register

DIV_DIVISOR

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							D	IVISO	R[31:16]						
Type								W	' O							
Reset								()							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								DIVISO	R[15:0]							
Type								W	' O							
Reset								()							

Divisor.

DIVIDER +000Ch

Divider Quotient register

DIV_QUOTIENT

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							Ql	JOTIEN	NT[31:1	6]						
Type								R	0							
Reset								()							

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							Q	UOTIE	NT[15:0	0]						
Type								R	0							
Reset		•	•		•	•		()	•		•	•		•	_

Quotient.

DIVIDER +0010h

Divider Remainder register

DIV_REMAINDE

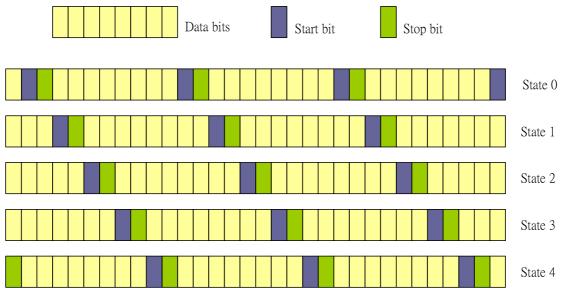
R

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							RE	MAIND	ER[31:	16]						
Type								R	0							
Reset								()							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							RE	MAINE	DER[15	:0]						
Type								R	0							
Reset								()							

Remainder.

5.2 CSD Accelerator

5.2.1 General Description


This unit performs the data format conversion of RA0, RA1, and FAX in CSD service. CSD service consists of two major functions: data flow throttling and data format conversion. The data format conversion is a bit-wise operation and requires several instructions to complete a conversion, thus making it inefficient for the MCU to perform itself. A coprocessor, CSD accelerator, is designed to reduce the computing power needed to perform this function.

The CSD accelerator helps in converting data format only; the data flow throttling function is still implemented by the MCU. CSD accelerator performs three types of data format conversion: RA0, RA1, and FAX.

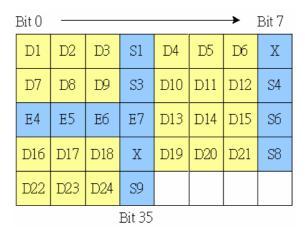
For RA0 conversion, too many case scenarios for the downlink path conversion greatly increase the hardware area cost, thus only uplink RA0 data format conversion is provided. Uplink RA0 conversion consists of inserting a start bit before and a stop bit after each a byte, for a duration of 16 bytes. Figure 49 illustrates the detailed conversion table.

Figure 49: Data Format Conversion of RA0

The RA0 converter processes data state by state. Therefore, before filling in new data, software must ensure that converted data of in a state is withdrawn, otherwise the converted data is replaced by new data. For example, if 32 bits of data are written, the state pointer increments from state 0 to state 1, and word ready of state 0 is asserted. Before writing the next 32-bit data, the word of state 0 must be withdrawn first, or the data is lost when the next conversion is performed.

RA0 records the number of written bytes, the state pointer, and a ready state word. This information helps the software to perform flow control. See Register Definition for more detail.

For RA1 conversion, both downlink and uplink directions are supported. The data formats vary for different data rate. Detailed conversion tables are shown in Figure 50 and Figure 51. The yellow part is the payload data, and the blue part is the status bit.


Figure 50: Data Format Conversion for 6k/12k RA1

Bit 0					->	Bit 6
D1	D2	D3	D4	D5	D6	S1
D7	D8	D9	D10	D11	D12	X
D13	D14	D15	D16	D17	D18	S3
D19	D20	D21	D22	D23	D24	S4
E4	E5	E6	E7	D25	D26	D27
D28	D29	D30	S6	D31	D32	D33
D34	D35	D36	X	D37	D38	D39
D40	D41	D42	S8	D43	D44	D45
D46	D47	D48	S9			

Bit 59

Figure 51: Data Format Conversion for 3.6k RA1

For FAX, two types of bit-reversal functions are provided. Type 1 reversal is a bit-wise reversal (Figure 52), and Type 2 is a byte-wise reversal (Figure 53).

Figure 52: Type 1 Bit Reversal

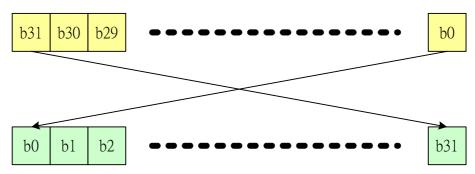


Figure 53: Type 2 Bit Reversal

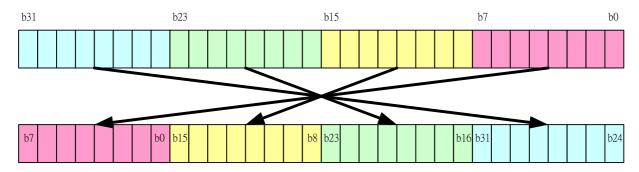


Table 34: CSD Accelerator Registers

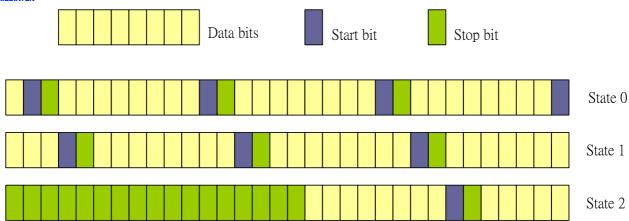
Register Address	Register Function	Acronym
CSD + 0000h	CSD RA0 Control Register	CSD_RA0_CON
CSD + 0004h	CSD RA0 Status Register	CSD_RA0_STA
CSD + 0008h	CSD RA0 Input Data Register	CSD_RA0_DI
CSD + 000Ch	CSD RA0 Output Data Register	CSD_RA0_DO
CSD + 0100h	CSD RA1 6K/12K Uplink Input Data Register 0	CSD_RA1_6K_12K_ULDI0
CSD + 0104h	CSD RA1 6K/12K Uplink Input Data Register 1	CSD_RA1_6K_12K_ULDI1
CSD + 0108h	CSD RA1 6K/12K Uplink Status Data Register	CSD_RA1_6K_12K_ULSTUS
CSD + 010Ch	CSD RA1 6K/12K Uplink Output Data Register 0	CSD_RA1_6K_12K_ULDO0
CSD + 0110h	CSD RA1 6K/12K Uplink Output Data Register 1	CSD_RA1_6K_12K_ULDO1
CSD + 0200h	CSD RA1 6K/12K Downlink Input Data Register 0	CSD_RA1_6K_12K_DLDI0

		_
CSD + 0204h	CSD RA1 6K/12K Downlink Input Data Register 1	CSD_RA1_6K_12K_DLDI1
CSD + 0208h	CSD RA1 6K/12K Downlink Output Data Register 0	CSD_RA1_6K_12K_DLDO0
CSD + 020Ch	CSD RA1 6K/12K Downlink Output Data Register 1	CSD_RA1_6K_12K_DLDO1
CSD + 0210h	CSD RA1 6K/12K Downlink Status Data Register	CSD_RA1_6K_12K_DLSTUS
CSD + 0300h	CSD RA13.6K Uplink Input Data Register 0	CSD_RA1_3P6K_ULDI0
CSD + 0304h	CSD RA13.6K Uplink Status Data Register	CSD_RA1_3P6K_ULSTUS
CSD + 0308h	CSD RA13.6K Uplink Output Data Register 0	CSD_RA1_3P6K_ULDO0
CSD + 030Ch	CSD RA13.6K Uplink Output Data Register 1	CSD_RA1_3P6K_ULDO1
CSD + 0400h	CSD RA1 3.6K Downlink Input Data Register 0	CSD_RA1_3P6K_DLDI0
CSD + 0404h	CSD RA1 3.6K Downlink Input Data Register 1	CSD_RA1_3P6K_DLDI1
CSD + 0408h	CSD RA1 3.6K Downlink Output Data Register 0	CSD_RA1_3P6K_DLDO0
CSD + 040Ch	CSD RA1 3.6K Downlink Status Data Register	CSD_RA1_3P6K_DLSTUS
CSD + 0500h	CSD FAX Bit Reverse Type 1 Input Data Register	CSD_FAX_BR1_DI
CSD + 0504h	CSD FAX Bit Reverse Type 1 Output Data Register	CSD_FAX_BR1_DO
CSD + 0510h	CSD FAX Bit Reverse Type 2 Input Data Register	CSD_FAX_BR2_DI
CSD + 0514h	CSD FAX Bit Reverse Type 2 Output Data Register	CSD_FAX_BR2_DO

5.2.2 Register Definitions

CSD+0000h CSD RA0 Control Register

CSD_RA0_CON


Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											RST	BTS0		VLD_BYTE		ΓΕ
Type											WO	WO		WO		
Reset											0	0		100		

VLD_BYTE Specifies the number of valid bytes in the current input data. This value must be specified before filling data.

BTS0 Back to state 0. Forces RA0 converter return back to state 0. Incomplete words are padded with stop bits. For example, consider a back-to-state0 command that is issued after 8 bytes of data are filled in. All bits after the 8th byte are padded with stop bits, and the second ready word byte RDYWD2 is asserted. After removing state word 2, the state pointer goes back to state 0. Note that new data filling should take place after removing state word 2, or the state pointer may be out of order.

Figure 54: Example of Back to State 0

RST Resets the RA0 converter. If an erroneous operation disorders the data, this bit restores all states to their original state.

CSD+0004h CSD RA0 Status Register

CSD_RA0_STA

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						BYTE	CNT			CRTST	4			RDYWE)	
Type						R	.0			RO				RC		
Reset						()			0				0		

RDYWD0~4 Ready words. Indicates which state words are ready for withdrawal. If any bits asserted, data must be withdrawn before new data is filled into CSD_RA0_DI, to avoid data loss.

0 Not ready

1 Ready

CRTSTA Current state. State0 ~ State4. Indicates which state word software is currently filling.

BYTECNT Total number of bytes being filled.

CSD+0008h CSD RA0 Input Data Register

CSD_RA0_DI

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								D	N							
Type								W	O							
Reset	0															
Bit	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Name								D	N							
Type								W	O							
Reset								()							

DIN The RA0 conversion input data. The ready word indicator is checked before filling in data; if any words are ready, they are withdrawn first, otherwise the ready data in RA0 converter is replaced.

CSD+000Ch CSD RA0 Output Data Register

CSD_RA0_DO

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								DC	UT							
Type								R	.0							
Reset		0														
Bit	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Name								DC	UT							
Type								R	.0							
Reset				·				()				·			

DOUT RA0 converted data. The return data corresponds to the ready word indicator defined in CSD RA0 STA register. The five bits of RDYWD map to state 0 ~ state 4 respectively. When CSD RA0 DO is read, the asserted state word is returned. If two state words asserted at the same time, the lower one is returned.

CSD RA1 6K/12K Uplink Input Data Register 0 CSD+0100h

CSD_RA1_6K_1 2K_ULDI0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								D	IN							
Type								W	0							
Reset	0															
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								D	IN							
Type								W	0							
Reset								()							

DIN D1 to D32 of the RA1 uplink data.

CSD RA1 6K/12K Uplink Input Data Register 1 CSD+0104h

CSD_RA1_6K_1 2K ULDI1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								DI	N							
Type								W	O							
Reset			•			•	•	()	•		•		•	•	

DIN D33 to D48 of the RA1 uplink data.

CSD+0108h CSD RA1 6K/12K Uplink Status Data Register

CSD_RA1_6K_1 **2K ULSTUS**

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										E7	E6	E5	E4	X	SB	SA
Type										WO						
Reset										0	0	0	0	0	0	0

- SA Represents S1, S3, S6, and S8 of the status bits.
- SB Represents S4 and S9 of the status bits.
- X Represents X of the status bits.
- **E4** Represents E4 of the status bits.
- **E5** Represents E5 of the status bits.
- **E6** Represents E6 of the status bits.
- **E7** Represents E7 of the status bits.

CSD RA1 6K/12K Uplink Output Data Register 0 CSD+010Ch

CSD_RA1_6K_1 2K ULDO0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								DO	UT							
Type		RO														
Reset								()							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Name	DOU
Type	RO
Reset	0

DOUT Bit 0 to bit 31 of the RA1 6K/12K uplink frame.

CSD+0110h CSD RA1 6K/12K Uplink Output Data Register 1

CSD_RA1_6K_1 2K_ULDO1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name										DC	UT						
Type										R	0						
Reset					0												
Bit	15	14	13	12	11 10 9 8 7 6 5 4 3 2 1 0												
Name								DO	UT								
Type								R	0								
Reset		•		•	•			()		•	•	•		•		

DOUT Bit 32 to bit 59 of the RA1 6K/12K uplink frame.

CSD+0200h CSD RA1 6K/12K Downlink Input Data Register 0

CSD_RA1_6K_1 2K_DLDI0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								D	N							
Type								W	O							
Reset								()							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								D	N							
Type								W	O							
Reset								()							

DIN Bit 0 to bit 31 of the RA1 6K/12K downlink frame.

CSD+0204h CSD RA1 6K/12K Downlink Input Data Register 1

CSD_RA1_6K_1 2K DLDI1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name										D	IN					
Type										W	O					
Reset										()					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								D	IN							
Type								W	0							
Reset						•	•	()		•			•		

DIN Bit 32 to bit 59 of the RA1 6K/12K downlink frame.

CSD+0208h CSD RA1 6K/12K Downlink Output Data Register 0

CSD_RA1_6K_1 2K_DLD00

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								DO	UT							
Type								R	.0							
Reset								()							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								DO	UT							
Type								R	.0							
Reset								()							

DOUT D1 to D32 of the RA1 downlink data.

CSD+020Ch CSD RA1 6K/12K Downlink Output Data Register 1

CSD_RA1_6K_1 2K_DLDO1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								DO	UT							
Type								R	0							
Reset						•		()	•	•	•		•	•	

DOUT D33 to D48 of the RA1 downlink data.

CSD+0210h CSD RA1 6K/12K Downlink Status Data Register

CSD_RA1_6K_1 2K_DLSTUS

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	2		. •						'					_		_
Name									,	E7	E6	E5	E4	X	SB	SA
							-		,	-	-	E5 RO	_	Y	SB RO	

- **SA** The majority vote of the S1, S3, S6 and S8 status bits. If the vote is split, SA=0.
- SB The majority vote of the S4 and S9 status bits. If the vote is split, SB=0.
- X The majority vote of the two X bits in downlink frame. If the vote is split, X=0.
- **E4** Represents E4 of the status bits.
- **E5** Represents E5 of the status bits.
- **E6** Represents E6 of the status bits.
- **E7** Represents E7 of the status bits.

CSD+0300h CSD RA1 3.6K Uplink Input Data Register 0

CSD_RA1_3P6 K ULDI0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name												D	IN			
Type												W	0			
Reset												()			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								D	IN							
Туре								W	' O							
Reset		•				•	•	()	•	•	•	•		•	_

DIN D1 to D24 of the RA1 3.6K uplink data.

CSD+0304h CSD RA1 3.6K Uplink Status Data Register

CSD_RA1_3P6 K ULSTUS

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										E7	E6	E5	E4	X	SB	SA
Type										WO						
Reset										0	0	0	0	0	0	0

SA Represents S1, S3, S6, and S8 of the status bits.

SB Represents S4 and S9 of the status bits.

X Represents X of the status bits.

E4 Represents E4 of the status bits.

E5 Represents E5 of the status bits.

E6 Represents E6 of the status bits.

E7 Represents E7 of the status bits.

CSD+0308h CSD RA1 3.6K Uplink Output Data Register 0

CSD_RA1_3P6 K ULDO0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								DO	UT							
Type								R	0							
Reset								()							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								DO	UT							
Type								R	0							
Reset								()							

DOUT Bit 0 to bit 31 of the RA1 3.6K uplink frame.

CSD+030Ch CSD RA1 3.6K Uplink Output Data Register 1

CSD_RA1_3P6 K ULDO1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														DO	UT	
Type														R	0	
Reset														()	

DOUT Bit 32 to bit 35 of the RA1 3.6K uplink frame.

CSD+0400h CSD RA1 3.6K Downlink Input Data Register 0

CSD_RA1_3P6 K DLDI0

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 Name DIN WO Type Reset 0 Bit 15 14 13 12 11 10 6 5 3 0 4 Name DIN WO Type Reset 0

DIN Bit 0 to bit 31 of the RA1 3.6K downlink frame.

CSD+0404h CSD RA1 3.6K Downlink Input Data Register 1

CSD_RA1_3P6 K_DLDI1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														DI	N	
Type														W	O	
Reset														()	

DIN Bit 32 to bit 35 of the RA1 3.6K downlink frame.

CSD+0408h CSD RA1 3.6K Downlink Output Data Register 0

CSD_RA1_3P6 K DLDO0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name												DO	UT			
Type												R	0			
Reset												()			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								DO	UT							
Type								R	P							
Reset								C)							

DIN D1 to D24 of the RA1 3.6K downlink data.

CSD+040Ch CSD RA1 3.6K Downlink Status Data Register

CSD_RA1_3P6
K DLSTUS

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
							_	-						-		
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		14	13	12	11	10	9	8	7	6 E7	5 E6	4 E5	۱ ٦	1 7	SB	
		14	13	12	11	10	9	8	7	6	-	4 E5 RO	3	2 Y	SB RO	0

- **SA** The majority vote of the S1, S3, S6 and S8 status bits. If the vote is split, SA=0.
- SB The majority vote of the S4 and S9 status bits. If the vote is split, SB=0.
- X The majority vote of the two X bits in downlink frame. If the vote is split, X=0.
- **E4** Represents E4 of status bits.
- **E5** Represents E5 of status bits.
- **E6** Represents E6 of status bits.
- **E7** Represents E7 of status bits.

CSD_FAX_BR1

DI

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								DI	N							
Type	WO															
Reset	0															
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								DI	N							
Type								W	O							
Reset								C)							

DIN 32-bit input data for a Type 1 bit reversal of the FAX data. A Type 1 bit reversal reverses the data bit by bit.

CSD+0504h CSD FAX Bit Reverse Type 1 Output Data Register

CSD_FAX_BR1 DO

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								DO	UT							
Type								R	0							
Reset	0															
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								DO	UT							
Type								R	0							

Reset 0

DOUT 32-bit result data for a Type 1 bit reversal of the FAX data.

CSD_FAX_BR2

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								D	IN							
Type								W	0							
Reset	0															
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								D	IN							
Type								W	0							
Reset								()							

DIN 32-bit input data for a Type 2 bit reversal of the FAX data. A Type 2 bit reversal reverses the data byte by byte.

CSD+0514h CSD FAX Bit Reverse Type 2 Output Data Register

CSD_FAX_BR2

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								DO	UT							
Type								R	0							
Reset	0															
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								DO	UT							
Type								R	0							
Reset		•	•	•	•	•	•	()		•		•		•	

DOUT 32-bit result data for a Type 2 bit reversal of the FAX data.

5.3 FCS Codec

5.3.1 General Description

The Frame Check Sequence (FCS) serves to detect errors in the following information bits:

- RLP-frame of CSD services in GSM: The frame length is fixed at 240 or 576 bits including the 24-bit FCS field
- LLC-frame of GPRS service: The frame length is determined by the information field, and length of the FCS field is 24 bits.

Generation of the FCS is very similar to CRC coding in baseband signal processing. ETSI GSM specifications 04.22 and 04.64 both define the coding rules as:

- 1. The CRC is the one's complement of the modulo-2 sum of the following additives:
 - the remainder of $x^k \cdot (x^{23} + x^{22} + x^{21} + ... + x^2 + x + 1)$ modulo-2 divided by the generator polynomial, where k is the number of bits of the dividend (i.e. fill the shift registers with all ones initially before feeding data); and,
 - the remainder of the modulo-2 division by the generator polynomial of the product of x^{24} by the dividend, which are the information bits.
- 2. The CRC-24 generator polynomial is:

$$G(x) = x^{24} + x^{23} + x^{21} + x^{20} + x^{19} + x^{17} + x^{16} + x^{15} + x^{13} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + 1$$

- 3. The 24-bit CRC is appended to the data bits in the MSB-first manner.
- 4. Decoding is identical to encoding except that data fed into the syndrome circuit is 24 bits longer than the information bits at encoding. The dividend is also multiplied by x²⁴. If no error occurs, the remainder satisfies: R(x) = x²² + x²¹ + x¹⁹ + x¹⁸ + x¹⁶ + x¹⁵ + x¹¹ + x⁸ + x⁵ + x⁴ (0x6d8930)
 And the parity output word is 0x9276cf.

In contrast to conventional CRC, this special coding scheme makes the encoder identical to the decoder and simplifies the hardware design.

5.3.2 Register Definitions

FCS+0000h FCS input data register

FCS_DATA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Type	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO

The data bits input. First write of this register is the starting point of the encode or decode process.

D0~15 The input format is D15· x^n + D14· x^{n-1} + D13· x^{n-2} + ... + Dk· x^k + ..., thus D15 is the first bit pushed into the shift register. If the last data word is less than 16 bits, the remaining bits are neglected.

FCS+0004h Input data length indication register

FCS_DLEN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		LEN														
Type		WO													-	

The MCU specifies the total data length (in bits) to be encoded or decoded.

LEN Data length. The length must be a multiple of 8 bits.

FCS+0x0008h FCS parity output register 1, MSB part

FCS PAR1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	P15	P14	P13	P12	P11	P10	P9	P8	P7	P6	P5	P4	P3	P2	P1	P0
Type	RC	RC	RC	RC	RC	RC	RC	RC	RC	RC	RC	RC	RC	RC	RC	RC
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

FCS+000Ch FCS parity output register 2, LSB part

FCS PAR2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									P23	P22	P21	P20	P19	P18	P17	P16
Type									RC							
Reset									0	0	0	0	0	0	0	0

Parity bits output. For FCS_PAR2, bit 8 to bit 15 are filled with zeros when reading.

P0~23 The output format is P23·D²³+ P22·D²²+ P21·D²¹+ ... + Pk·D^k+ ...+P1·D¹+P0, thus P23 is the first bit being popped out from the shift register and the first appended to the information bits. In other words, {FCS_PAR2[7:0], FCS_PAR1[15:8], FCS_PAR1[7:0] } is the order of the parity bits appended to the data.

FCS+0010h FCS codec status register

FCS STAT

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														BUSY	FER	RDY
Type														RC	RC	RC
Reset														0	1	0

BUSY Indicates whether or not the current data work is available for writing. The codec works in a serial manner and the data word is input in a parallel manner. **BUSY=1** indicates that the current data word is being

- processed and a write to FCS_DATA is invalid: the operation is permitted but the data may not be consistent. BUSY=0 allows a write of FCS_DATA during an encoding or decoding process.
- FER Frame error indication, for decode mode only. FER=0 means no error has occurred; FER=1 indicates the parity check has failed. Writing to FCS_RST.RST or the first write to FCS_DATA resets this bit to 0.
- When RDY=1, verify that the encode or decode process has been finished. For an encode, the parity data in FCS_PAR1 and FCS_PAR2 are available and consistent. For a decode, FCS_STAT.FER indication is valid. A write of FCS_RST.RST or the first write of FCS_DATA resets this bit to 0.

FCS+0014h FCS codec reset register

FCS_RST

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name													EN_D E	PAR	BIT	RST
Туре													WO	WO	WO	WO

- RST = 0 resets the CRC coprocessor. Before setup of the FCS codec, the MCU needs to set RST=0 to flush the shift register content before encode or decode.
- BIT=0 signifies not to invert the bit order in a data word byte when the codec is running. BIT=1 signifies to reverse the bit order in a byte written in FCS_DATA.
- PAR = 0 means not to invert the bit order in a byte of parity words when the codec is running, including reading FCS_PAR1 and FCS_PAR2. PAR=1 means the bit order of the parity words should be reversed, in encoding or decoding.
- **EN DE EN**_**DE**=0 indicates an encode operation; **EN**_**DE**=1 indicates a decode operation.

6 Multi-Media Subsystem

MT6225 is specially designed to support multi-media terminals. It integrates several hardware based accelerators, like advanced LCD display controller and hardware Image Resizer. Besides, MT6225 also incorporates NAND Flash, USB 1.1 Device and SD/MMC/MS/MS Pro Controllers for massive data transfers and storages. This chapter describes those functional blocks in detail.

6.1 LCD Interface

6.1.1 General Description

MT6225 contains a versatile LCD controller which is optimized for multimedia applications. This controller supports many types of LCD modules and contains a rich feature set to enhance the functionality. These features are:

- Up to 320 x 240 resolution
- The internal frame buffer supports 8bpp indexed color and RGB 565 format.
- Supports 8-bpp (RGB332), 12-bpp (RGB444), 16-bpp (RGB565), 18-bit (RGB666) and 24-bit (RGB888) LCD modules.
- 4 Layers Overlay with individual color depth, window size, vertical and horizontal offset, source key, alpha value and display rotation control(90°,180°, 270°, mirror and mirror then 90°, 180° and 270°)
- One Color Look-Up Tables

For parallel LCD modules, the LCD controller can reuse external memory interface or use dedicated 8/9/16/18-bit parallel interface to access them and 8080 type interface is supported. It can transfer the display data from the internal SRAM or external SRAM/Flash Memory to the off-chip LCD modules.

For serial LCD modules, this interface performs parallel to serial conversion and both 8- and 9- bit serial interface is supported. The 8-bit serial interface uses four pins – LSCE#, LSDA, LSCK and LSA0 – to enter commands and data. Meanwhile, the 9-bit serial interface uses three pins – LSCE#, LSDA and LSCK – for the same purpose. Data read is not available with the serial interface and data entered must be 8 bits.

Data and command send to LCM are always through the parallel Nandflash/Lcd interface or through serial SPI/LCD interface. Sending LCM signals through EMI is forbidden, but the pixel data produced by LCD controller can be dumped to memory through AHB bus.

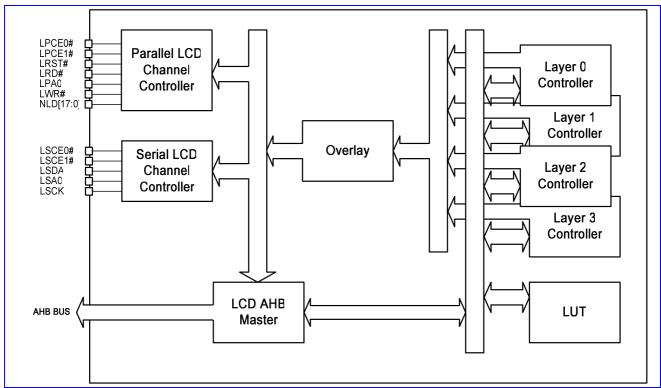


Figure 55 LCD Interface Block Diagram

Figure 56 shows the timing diagram of this serial interface. When the block is idle, LSCK is forced LOW and LSCE# is forced HIGH. Once the data register contains data and the interface is enabled, LSCE# is pulled LOW and remain LOW for the duration of the transmission.

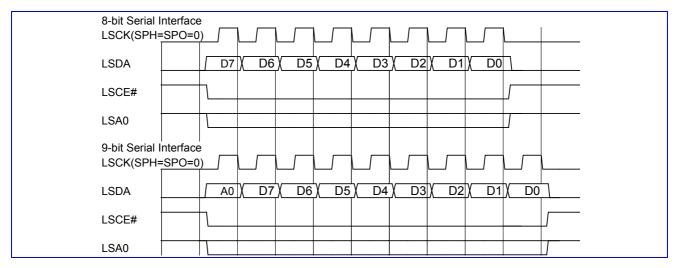


Figure 56 LCD Interface Transfer Timing Diagram

LCD = 0x9000 0000

Address	Register Function	Width	Acronym
LCD + 0000h	LCD Interface Status Register	16	LCD_STA
LCD + 0004h	LCD Interface Interrupt Enable Register	16	LCD_INTEN
LCD + 0008h	LCD Interface Interrupt Status Register	16	LCD_INTSTA
LCD + 000ch	LCD Interface Frame Transfer Register	16	LCD_START
LCD + 0010h	LCD Parallel/Serial LCM Reset Register	16	LCD_RSTB

MEDIATEK			
LCD + 0014h	LCD Serial Interface Configuration Register	16	LCD_SCNF
LCD + 0018h	LCD Parallel Interface 0 Configuration Register	32	LCD_PCNF0
LCD + 001ch	LCD Parallel Interface 1 Configuration Register	32	LCD_PCNF1
LCD + 0020h	LCD Parallel Interface 2 Configuration Register	32	LCD_PCNF2
LCD + 0024h	LCD Parallel Interface N-to-L Wait Cycle	16	LCD_N2L_WAIT_CYCLE
LCD + 0040h	LCD Main Window Size Register	32	LCD_MWINSIZE
LCD + 0044h	LCD ROI Window Write to Memory Offset Register	32	LCD_WROI_W2MOFS
LCD + 0048h	LCD ROI Window Write to Memory Control Register	16	LCD_WROI_W2MCON
LCD + 004ch	LCD ROI Window Write to Memory Address Register	32	LCD_WROI_W2MADD
LCD + 0050h	LCD ROI Window Control Register	32	LCD_WROICON
LCD + 0054h	LCD ROI Window Offset Register	32	LCD_WROIOFS
LCD + 0058h	LCD ROI Window Command Start Address Register	16	LCD_WROICADD
LCD + 005ch	LCD ROI Window Data Start Address Register	16	LCD_WROIDADD
LCD + 0060h	LCD ROI Window Size Register	32	LCD_WROISIZE
LCD + 0068h	LCD ROI Window Background Color Register	32	LCD_WROI_BGCLR
LCD + 0070h	LCD Layer 0 Window Control Register	32	LCD_L0WINCON
LCD + 0074h	LCD Layer 0 Window Display Offset Register	32	LCD_L0WINOFS
LCD + 0078h	LCD Layer 0 Window Display Start Address Register	32	LCD_L0WINADD
LCD + 008Ch	LCD Layer 0 Window Size	32	LCD_L0WINSIZE
LCD + 0080h	LCD Layer 1 Window Control Register	32	LCD_L1WINCON
LCD + 0084h	LCD Layer 1 Window Display Offset Register	32	LCD_L1WINOFS
LCD + 0088h	LCD Layer 1 Window Display Start Address Register	32	LCD_L1WINADD
LCD + 008Ch	LCD Layer 1 Window Size	32	LCD_L1WINSIZE
LCD + 0090h	LCD Layer 2 Window Control Register	32	LCD_L2WINCON
LCD + 0094h	LCD Layer 2 Window Display Offset Register	32	LCD_L2WINOFS
LCD + 0098h	LCD Layer 2 Window Display Start Address Register	32	LCD_L2WINADD
LCD + 009Ch	LCD Layer 2 Window Size	32	LCD_L2WINSIZE
LCD + 00A0h	LCD Layer 3 Window Control Register	32	LCD_L3WINCON
LCD + 00A4h	LCD Layer 3 Window Display Offset Register	32	LCD_L3WINOFS
LCD + 00A8h	LCD Layer 3 Window Display Start Address Register	32	LCD_L3WINADD
LCD + 00ACh	LCD Layer 3 Window Size	32	LCD_L3WINSIZE
LCD + 4000h	LCD Parallel Interface 0 Data	32	LCD_PDAT0
LCD + 4100h	LCD Parallel Interface 0 Command	32	LCD_PCMD0
LCD + 5000h	LCD Parallel Interface 1 Data	32	LCD_PDAT1
LCD + 5100h	LCD Parallel Interface 1 Command	32	LCD_PCMD1
LCD + 6000h	LCD Parallel Interface 2 Data	32	LCD_PDAT2
LCD + 6100h	LCD Parallel Interface 2 Command	32	LCD_PCMD2
LCD + 8000h	LCD Serial Interface 1 Data	16	LCD_SDAT1
LCD + 8100h	LCD Serial Interface 1 Command	16	LCD_SCMD1
LCD + 9000h	LCD Serial Interface 0 Data	16	LCD_SDAT0
LCD + 9100h	LCD Serial Interface 0 Command	16	LCD_SCMD0
LCD + c000h	LCD Color Palette LUT0 Register	32	LCD_PAL
	•	•	•

~ c3FCh			
LCD + c400h ~ c47Ch	LCD Interface Command/Parameter 0 Register	32	LCD_COMD0
LCD + c480h ~ c4FCh	LCD Interface Command/Parameter 1 Register	32	LCD_COMD1
LCD + c500h ~ c5FCh	LCD Gamma LUT Register	32	LCD_GAMMA

Table 35 Memory Map of LCD Interface

6.1.2 Register Definitions

LCD +0000h LCD Interface Status Register

LCD_STA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																RUN
Type																R
Reset																0

RUN LCD Interface Running Status

LCD +0004h LCD Interface Interrupt Enable Register

LCD_INTEN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																CPL
Type																R/W
Reset																0

CPL LCD Frame Transfer Complete Interrupt Control

LCD +0008h LCD Interface Interrupt Status Register

LCD_INTSTA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																CPL
Type																R
Reset																0

CPL LCD Frame Transfer Complete Interrupt

LCD +000Ch LCD Interface Frame Transfer Register

LCD_START

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	STAR T															
Type	R/W															
Reset	0	_			_		_									

START Start Control of LCD Frame Transfer

LCD +0010h LCD Parallel/Serial Interface Reset Register

LCD_RSTB

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																RSTB
Type																R/W
Reset																1

RSTB Parallel/Serial LCD Module Reset Control

LCD +0014h LCD Serial Interface Configuration Register

LCD _SCNF

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	26M	13M	GAMI	/IA_ID			CSP1	CSP0				8/9	D	V	SPH	SPO
Type	R/W	R/W	R/	W			R/W	R/W				R/W	R/	W	R/W	R/W

Type 0 0 0 0 0 0 0 0 0 0

SPO Clock Polarity Control

SPH Clock Phase Control

Serial Clock Divide Select Bits

8/9 8-bit or 9-bit Interface SelectionCSP0 Serial Interface Chip Select 0 Polarity Control

CSP1 Serial Interface Chip Select 1 Polarity Control

GAMMA_ID Serial Interface Gamma Table Selection

00 table 0

01 table 1

10 table 2

11 no table selected

13M Enable 13MHz clock gating

26M Enable 26MHz clock gating

LCD +0018h LCD Parallel Interface Configuration Register 0

LCD_PCNF0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	C21	ws	C21	МН		C2	RS		GAMN F	IA_ID_ R	GAMN	IA_ID_ G	GAMN	IA_ID_ 3	D\	N
Type	R/	W	R/	W		R/	W		R/	W	R	W	R/	W	R/	W
	()	()		()		())	()	0)
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	26M	13M				WST								RLT		
Type	R/W	R/W			•	R/W	•					-		R/W	•	
Reset	0	0				0								0		

RLT Read Latency Time

WST Write Wait State Time

13M Enable 13MHz clock gating

26M Enable 26MHz clock gating

DW Data width of the parallel interface

00 8-bit.

01 9-bit

10 16-bit

11 18-bit

GAMMA_ID __RGamma Correction LUT ID for Red Component

00 table 0

01 table 1

10 table 2

11 no table selected

GAMMA_ID_G Gamma correction LUT ID for Green Component

00 table 0

01 table 1

10 table 2

11 no table selected

GAMMA ID B Gamma correction LUT ID for Blue Component

00 table 0

01 table 1

10 table 2

11 no table selected

C2RS Chip Select (LPCE#) to Read Strobe (LRD#) Setup Time

C2WH Chip Select (LPCE#) to Write Strobe (LWR#) Hold Time

C2WS Chip Select (LPCE#) to Write Strobe (LWR#) Setup Time

LCD +001Ch LCD Parallel Interface Configuration Register 1

LCD_PCNF1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	C2	WS	C2V	WH		C2	RS				GAM	M_ID			D'	V
Type	R/	W	R/	W		R/	W				R	W			R/	W
	(0	C)		())			()
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	26M	13M				WST								RLT		
Type	R/W	R/W				R/W								R/W		
Reset	0	0				0								0		

RLT Read Latency Time

WST Write Wait State Time

13M Enable 13MHz clock gating

26M Enable 26MHz clock gating

DW Data width of the parallel interface

00 8-bit.

01 9-bit

10 16-bit

11 18-bit

GAMMA_ID Gamma correction LUT ID for RGB component

00 table 0

01 table 1

10 table 2

11 no table selected

C2RS Chip Select (LPCE#) to Read Strobe (LRD#) Setup Time

C2WH Chip Select (LPCE#) to Write Strobe (LWR#) Hold Time

C2WS Chip Select (LPCE#) to Write Strobe (LWR#) Setup Time

LCD +0020h LCD Parallel Interface Configuration Register 2

LCD_PCNF2

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	C21	WS	C21	WH		C2	RS				GAMI	MA_ID			D	N
Type	R/	W	R/	W		R/	W				R	W			R/	W
	()	()		())			C)
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	1	0	
Name	26M	13M				WST								RLT		
Type	R/W	R./W				R/W								R/W		
Reset	0	0				0								0		

RLT Read Latency Time

WST Write Wait State Time

13M Enable 13MHz clock gating.

26M Enable 26MHz clock gating.

DW Data width of the parallel interface

00 8-bit.

01 9-bit

10 16-bit

11 18-bit

GAMMA_ID Gamma Correction LUT ID

00 table 0

01 table 1

10 table 2

11 no table selected

C2RS Chip Select (LPCE#) to Read Strobe (LRD#) Setup Time

C2WH Chip Select (LPCE#) to Write Strobe (LWR#) Hold Time

C2WS Chip Select (LPCE#) to Write Strobe (LWR#) Setup Time

LCD +0024h LCD N-to-L Wait Cycle Register

LCD_N2L_WAIT_C

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name													N2L_WAIT_CYCLE R/W			
Type																
Reset														()	

N2L_WAIT_CYCLE Wait cycle between Nandflash to LCD bus grant. The period is (N2L_WAIT_CYCLE+1).

LCD +4000h LCD Parallel 0 Interface Data

LCD_PDAT0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								DATA	[31:16]							
Type								R/	W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								DATA	[15:0]							
Type								R/	W							

DATA Writing to LCD+4000 will drive LPA0 low when sending this data out in parallel BANK0, while writing to LCD+4100 will drive LPA0 high.

LCD +5000h LCD Parallel 1 Interface Data

LCD_PDAT1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								DATA	[31:16]							
Type																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								DATA	[15:0]							
Туре								R/	W							

DATA Writing to LCD+5000 will drive LPA0 low when sending this data out in parallel BANK1, while writing to LCD+5100 will drive LPA0 high

LCD +6000h LCD Parallel 2 Interface Data

LCD_PDAT2

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								DATA	31:16]							
Type								R/	W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								DATA	[15:0]							
Type								R/	W							

DATA Writing to LCD+6000 will drive LPA0 low when sending this data out in parallel BANK2, while writing to LCD+6100 will drive LPA0 high

LCD

+8000/8100h LCD Serial Interface 1 Data

LCD_SDAT1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												DA	TA			
Type												V	V			

DATA

Writing to LCD+8000 will drive LSA0 low while sending this data out in serial BANK1, while writing to LCD+8100 will drive LSA0 high

LCD +9000/9100h

LCD Serial Interface 0 Data

LCD_SDAT0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												DA	TA			
Type												V				

DATA Writing to LCD+9000 will drive LSA0 low while sending this data out in serial BANK0, while writing to LCD+9100 will drive LSA0 high

LCD +0040h Main Window Size Register

LCD_MWINSIZE

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name											RC)W				
Type											R/	W				
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											COL	UMN				
Type											R/	W				

COLUMN 10-bit Virtual Image Window Column Size

ROW 10-bit Virtual Image Window Row Size

LCD +0044h Region of Interest Window Write to Memory Offset LCD_WROI_W2 Register MOFS

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name											Y-OF	FSET				
Type											R/	W				
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											X-OF	FSET				
Type											R/	W				

This control register is used to specify the offset of the ROI window from the LCD_WROI_W2MADDR when writing the ROI window's content to memory.

X-OFFSET the x offset of ROI window in the destination memory.

Y-OFFSET the y offset of ROI window in the destination memory.

LCD +0048h Region of Interest Window Write to Memory Control LCD_WROI_W2 Register MOON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														DISC ON		W2L CM
Туре														R/W		R/W
Reset														0		0

This control register is effective only when the W2M bit is set in LCD_WROICON register.

W2LCM Write to LCM simultaneously.

DISCON Block Write Enable Control. By setting both DISCON and W2M to 1, the LCD controller will write out the ROI pixel data as a part of MAIN window, using the width of MAIN window to calculate the write-out address. If this bit is not set, the ROI window will be written to memory in continuous addresses.

LCD +004Ch Region of Interest Window Write to Memory Address Register

LCD_WROI_W2
MADD

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								W2M_	ADDR							

Type								R/	W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		W2M_ADDR														
Type								R/	W							

W2M_ADDR Write to memory address.

LCD +0050h Region of Interest Window Control Register

LCD_WROICO

N

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	EN0	EN1	EN2	EN3							PER	IOD				
Type	R/W	R/W	R/W	R/W							R/	W				
Bit	15	14	13	12	11	10 9 8 7 6 5 4 3 2 1 0										
Name	ENC	W2M	COM M_SE L		C	AMMC	ND					FOR	MAT			
Type	R/W	R/W	R/W			R/W						R/	W			

FORMAT LCD Module Data Format

Bit 0: in BGR sequence, otherwise in RGB sequence.

Bit 1: LSB first, otherwise MSB first.

Bit 2: padding bits on MSBs, otherwise on LSBs.

Bit 5-3: 000 for RGB332, 001 for RGB444, 010 for RGB565, 011 for RGB666, 100 for RGB888.

Bit 7-6: 00 for 8-bit interface, 01 for 16-bit interface, 10 for 9-bit interface, 11 for 18-bit interface.

Note: When the interface is configured as 9 bit or 18 bit, the field of bit5-2 is ignored.

00000000	8bit	1cycle/1pixel	RGB3.3.2	RRRGGGBB
00000001		1cycle/1pixel	RGB3.3.2	BBGGGRRR
00001000		3cycle/2pixel	RGB4.4.4	RRRRGGGG
				BBBBRRRR
				GGGGBBBB
00001011		3cycle/2pixel	RGB4.4.4	GGGGRRRR
				RRRRBBBB
				BBBBGGGG
00010000		2cycle/1pixel	RGB5.6.5	RRRRGGG
				GGGBBBBB
00010011		2cycle/1pixel	RGB5.6.5	GGGRRRRR
				BBBBBGGG
00011000		3cycle/1pixel	RGB6.6.6	RRRRRXX
				GGGGGXX
				BBBBBBXX
00011100		3cycle/1pixel	RGB6.6.6	XXRRRRRR
				XXGGGGGG
				XXBBBBBB
00100000		3cycle/1pixel	RGB8.8.8	RRRRRRR
				GGGGGGG
				BBBBBBBB
10011000	9bit	2cycle/1pixel	RGB6.6.6	RRRRRGGG
				GGGBBBBBB
10011011		2cycle/1pixel	RGB6.6.6	GGGRRRRR
				BBBBBBGGG
01000000	16bit	1cycle/2pixel	RGB3.3.2	RRRGGGBBRRRGGGBB

MEDIATEK				
01000010		1cycle/2pixel	RGB3.3.2	RRRGGGBBRRRGGGBB
01000001		1cycle/2pixel	RGB3.3.2	BBGGGRRRBBGGGRRR
01000011		1cycle/2pixel	RGB3.3.2	BBGGGRRRBBGGGRRR
01001100		1cycle/1pixel	RGB4.4.4	XXXXRRRRGGGGBBBB
01001101		1cycle/1pixel	RGB4.4.4	XXXXBBBBGGGGRRRR
01001000		1cycle/1pixel	RGB4.4.4	RRRRGGGGBBBBXXXX
01001001		1cycle/1pixel	RGB4.4.4	BBBBGGGRRRRXXXX
01010000		1cycle/1pixel	RGB5.6.5	RRRRGGGGGBBBBB
01010001		1cycle/1pixel	RGB5.6.5	BBBBBGGGGGRRRRR
01011100		3cycle/2pixel	RGB6.6.6	XXXXRRRRRRGGGGGG
				XXXXBBBBBBBRRRRR
				XXXXGGGGGGBBBBBB
01011111		3cycle/2pixel	RGB6.6.6	XXXXGGGGGGRRRRR
				XXXXRRRRRRBBBBB
				XXXXBBBBBBBGGGGG
01011000		3cycle/2pixel	RGB6.6.6	RRRRRGGGGGXXXX
				BBBBBBRRRRRXXXX
				GGGGGBBBBBBXXXX
01011011		3cycle/2pixel	RGB6.6.6	GGGGGRRRRRXXXX
				RRRRRBBBBBBXXXX
				BBBBBBGGGGGXXXX
01100000		3cycle/2pixel	RGB8.8.8	RRRRRRRGGGGGGG
				BBBBBBBBRRRRRRR
				GGGGGGGBBBBBBBB
01100011		3cycle/2pixel	RGB8.8.8	GGGGGGGRRRRRRR
				RRRRRRRBBBBBBB
				BBBBBBBBRRRRRRR
11011000	18bit	1cycle/1pixel	RGB6.6.6	RRRRRGGGGGBBBBBB
11011001		1cycle/1pixel	RGB6.6.6	BBBBBBGGGGGRRRRRR
11100000		3cycle/2pixel	RGB8.8.8	RRRRRRRGGGGGGG
				BBBBBBBBRRRRRRR
				GGGGGGGBBBBBBBB
11100011		3cycle/2pixel	RGB8.8.8	GGGGGGGRRRRRRR
				RRRRRRRBBBBBBB
				BBBBBBBBRRRRRRR

COMMAND Number of Commands to be sent to LCD module. Maximum is 31.

COMM_SEL Command Queue Selection, 0 for LCD_COMD0, 1 for LCD_COMD1.

W2M Enable Data Address Increasing After Each Data Transfer

ENC Command Transfer Enable Control

PERIOD Waiting period between two consecutive transfers, effective for both data and command.

ENn Layer Window Enable Control

LCD +0054h Region of Interest Window Offset Register

LCD_WROIOFS

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name											Y-OF	FSET				
Type											R/	W				
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											X-OF	FSET				
Type											R/	W				

X-OFFSET ROI Window Column Offset

Y-OFFSET ROI Window Row Offset

LCD +0058h Region of Interest Window Command Start Address LCD_WROICAD Register D

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								AD	DR							
Type		•	•	•		•	•	R/	W	•		•	•			

ADDR ROI Window Command Address. Only writing to LCD modules is allowed.

LCD +005Ch Region of Interest Window Data Start Address Register

LCD_WROIDAD

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								AD	שוו							
Type								R/	W							

ADDR ROI Window Data Address Only writing to LCD modules is allowed.

LCD +0060h Region of Interest Window Size Register

LCD_WROISIZE

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name											RC	W				
Type											R/	W				
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											COL	UMN				
Type											R/	W				

COLUMN ROI Window Column Size (height)

ROW ROI Window Row Size (width)

LCD +0068h Region of Interest Background Color Register

LCD_WROI_BG

CLR

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		F	RED[4:0)]				GREE	N[5:0]				В	LUE[4:	0]	
Type			R/W					R/	W					R/W		
Reset			1_1111					11_	1111					1_1111		

RED Red component of ROI window's background color

GREENGreen component of ROI window's background color

BLUE Blue component of ROI window's background color

LCD +0070h Layer 0 Window Control Register

LCD_L0WINCO

N

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								SRC	KEY							
Type								R۸	W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	SRC	KEYE N	F	ROTATI		PLAE N		OPAE N			OPA					SWP
Type	R/W	R/W	•	R/W	•	R/W		R/W	•	•	R/W					R/W

SWP Swap high byte and low byte of pixel data

OPA Opacity value, used as constant alpha value.

OPAEN Opacity enabled

PLAEN Color Palette enabled (8bpp indexed color mode), otherwise in RGB565 mode.

ROTATE Rotation Configuration

000 0 degree rotation

001 90 degree rotation anti-counterclockwise

010 180 degree rotation anti-counterclockwise

011 270 degree rotation anti-counterclockwise

100 Horizontal flip

101 Horizontal flip then 90 degree rotation anti-counterclockwise

110 Horizontal flip then 180 degree rotation anti-counterclockwise

111 Horizontal flip then 270 degree rotation anti-counterclockwise

KEYEN Source Key Enable Control

SRC Disable auto-increment of the source pixel address

LCD +0074h Layer 0 Window Display Offset Register

LCD_L0WINOF

S

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name											Y-OF	FSET				
Type											R/	W				
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											X-OF	FSET				
Type											R/	W				

Y-OFFSET Layer 0 Window Row Offset

X-OFFSET Layer 0 Window Column Offset

LCD+0078h Layer 0 Window Display Start Address Register

LCD_L0WINAD

_

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								AD	DR							
Type								R/	W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								AD	DR							
Type								R/	W							

ADDR Layer 0 Window Data Address

LCD +007Ch Layer 0 Window Size

LCD_LOWINSIZ

Ē

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name											RC)W				
Type											R/	W				
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											COL	UMN				
Type											R/	W				

ROW Layer 0 Window Row Size

COLUMN Layer 0 Window Column Size

LCD +0080h Layer 1 Window Control Register

LCD_L1WINCO

N

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								SRC	KEY							
Type								R/	W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	SRC	KEYE N	F	ROTATI	E	PLAE N	PLA0/ 1	OPAE N			ОРА					SWP

| Г | Type | R/W |
|---|------|-----|-----|-----|-----|-----|-----|-----|-----|

SWP Swap high byte and low byte of pixel data

OPA Opacity value, used as constant alpha value.

OPAEN Opacity enabled

PLA0/1 Palette 0 or 1 selection

PLAEN Color Palette enabled (8bpp indexed color mode), otherwise in RGB565 mode.

ROTATE Rotation Configuration

000 0 degree rotation

001 90 degree rotation counterclockwise

010 180 degree rotation counterclockwise

011 270 degree rotation counterclockwise

100 Horizontal flip

101 Horizontal flip then 90 degree rotation counterclockwise

110 Horizontal flip then 180 degree rotation counterclockwise

111 Horizontal flip then 270 degree rotation counterclockwise

KEYEN Source Key Enable Control

SRC Disable auto-increment of the source pixel address

LCD +0084h Layer 1 Window Display Offset Register

LCD_L1WINOF

S

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name											Y-OF	FSET					
Type							RW										
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name											X-OF	FSET					
Type							RW										

Y-OFFSET Layer 1 Window Row Offset

X-OFFSET Layer 1 Window Column Offset

LCD+0088h Layer 1 Window Display Start Address Register

LCD_L1WINAD

ח

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								AD	DR							
Type								R/	W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								AD	DR							
Type								R/	W	•			•			

ADDR Layer 1 Window Data Address

LCD +008Ch Layer 1 Window Size

LCD_L1WINSIZ

Е

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name											RC	W					
Type											R/	W					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name											COL	UMN					
Type							RW										

ROW Layer 1 Window Row Size

COLUMN Layer 1 Window Column Size

LCD +0090h Layer 2 Window Control Register

LCD_L2WINCO

N

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								SRC	KEY							
Type								R/	W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	SRC	KEYE N	F	ROTATI	E	PLAE N	PLA0/ 1	OPAE N			OPA					SWP
Type	R/W	R/W		R/W		R/W	R/W	R/W			R/W					R/W

SWP Swap high byte and low byte of pixel data

OPA Opacity value, used as constant alpha value.

OPAEN Opacity enabled

PLA0/1 Palette 0 or 1 selection

PLAEN Color Palette enabled(8bpp indexed color mode), otherwise in RGB565 mode.

ROTATE Rotation Configuration

000 0 degree rotation

001 90 degree rotation anti-counterclockwise

010 180 degree rotation anti-counterclockwise

011 270 degree rotation anti-counterclockwise

100 Horizontal flip

101 Horizontal flip then 90 degree rotation anti-counterclockwise

110 Horizontal flip then 180 degree rotation anti-counterclockwise

111 Horizontal flip then 270 degree rotation anti-counterclockwise

Layer 2 Window Display Offset Register

KEYEN Source Key Enable Control

LCD +0094h

SRC Disable auto-increment of the source pixel address

LCD_L2WINOF

S

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name											Y-OF	FSET					
Type							R/W										
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name											X-OF	FSET					
Type							RW										

Y-OFFSET Layer 2 Window Row Offset

X-OFFSET Layer 2 Window Column Offset

LCD+0098h Layer 2 Window Display Start Address Register

LCD_L2WINAD

D

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								AD	DR							
Type								R/	W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								AD	DR							
Type			•				•	R/	W		•	•	•	•		

ADDR Layer 1 Window Data Address

LCD +009Ch Layer 2 Window Size

LCD_L2WINSIZ

Ε

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		•	•													

Name											RC	W					
Type											R/	W					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name											COL	UMN					
Type							COLUMN R/W										

ROW Layer 2 Window Row Size

COLUMN Layer 2 Window Column Size

LCD +00A0h Layer 3 Window Control Register

LCD_L3WINCO

Ν

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																SWP
Type																R/W
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	SRC	KEYE N	F	ROTATI	E	CLR	DPT	OPAE N				OF	PA			
Type	R/W	R/W		R/W			W	R/W				R/	W			

SWP Swap high byte and low byte of pixel data

OPA Opacity value, used as constant alpha value.

OPAEN Opacity enabled

PLA0/1 Palette 0 or 1 selection

PLAEN Color Palette enabled (8bpp indexed color mode), otherwise in RGB565 mode.

ROTATE Rotation Configuration

000 0 degree rotation

001 90 degree rotation anti-counterclockwise

010 180 degree rotation anti-counterclockwise

011 270 degree rotation anti-counterclockwise

100 Horizontal flip

101 Horizontal flip then 90 degree rotation anti-counterclockwise

110 Horizontal flip then 180 degree rotation anti-counterclockwise

111 Horizontal flip then 270 degree rotation anti-counterclockwise

KEYEN Source Key Enable Control

SRC Disable auto-increment of the source pixel address

LCD +00A4h Layer 3 Window Display Offset Register

LCD L3WINOF

S

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name											Y-OF	FSET					
Type							RW										
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name											X-OF	FSET					
Type							RW										

Y-OFFSET Layer 3 Window Row Offset

X-OFFSET Layer 3 Window Column Offset

LCD+00A8h Layer 3 Window Display Start Address Register

LCD_L3WINAD

D

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	ADDR															
Type		R/W														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Name	ADDR
Type	R/W

ADDR Layer 3 Window Data Address

LCD +00ACh Layer 3 Window Size

LCD_L3WINSIZ

Ε

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
Name											RC	W						
Type						RW												
Bit	15	14	13	12	11	10												
Name											COL	UMN						
Type							COLUMN R/W											

ROW Layer 3 Window Row Size

COLUMN Layer 3 Window Column Size

LCD

+C000h~C3FCh LCD Interface Color Palette LUT Registers

LCD_PAL

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name															RED	[5:4]
Type															R/	W
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		RED	[3:0]				GREE	N[5:0]					BLUE	[5:0]		
Type		R/	W				R/	W					R./	W		

LUT0 These Bits Set Palettte LUT Data in RGB666 Format

LCD +C400h~C47C LCD Interface Command/Parameter 0 Registers LCD_COMD0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name														CO	COMN	l[17:16 l
Туре														R/W	R/	W
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								COMN	I[15:0]							
Type			•	•	•	•	•	R/	W	•					•	

COMM Command Data and Parameter Data for LCD Module

Write to ROI Command Address if C0 = 1, otherwise write to ROI Data Address

LCD +C480h~C500 LCD Interface Command/Parameter 1 Registers LCD_COMD1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name														CO	COMM	[17:16
Type														R/W	R/	W
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								COMN	I[15:0]							
Type		•	•	•	•	•		R/	W	•	•	•		•	•	•

COMM Command Data and Parameter Data for LCD Module

Write to ROI Command Address if C0 = 1, otherwise write to ROI Data Address

LCD

+C500h~C5FCh

LCD Interface Gamma LUT Registers

LCD_GAMMA

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name															TABLE 4]	_2[5:
Type															R/V	٧

Bit	15	TABLE_2[3:0]			11	10	9	8	7	6	5	4	3	2	1	0
Name			_2[3:0]				TABLE	_1[5:0]					TABLE	_0[5:0]		
Type		R/	W				R/	W					R./	W		

TABLE_0 These Bits Set the Values of Gamma Table 0 **TABLE_1** These Bits Set the Values of Gamma Table 1

TABLE 2 These Bits Set the Values of Gamma Table 2

6.2 Image Resizer

6.2.1 General Description

This block provides the image resizing function for image and video capturing scenarios. It receives image data from the ISP module, performs the image resizing function and outputs either RGB565 or YUV420 to the GMC module. **Figure 57** shows the block diagram. The capture resize is composed of horizontal and vertical resizing blocks. It can scale up or down the input image by any ratio. However, the maximum sizes of input and output images are limited to 2047x2047.

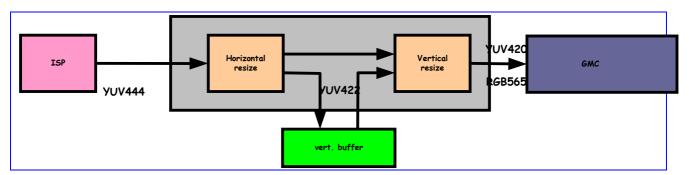


Figure 57 Overview of Image Resizer

The base address of Image Resizer is 0x8061 0000.

6.2.2 Fine Resizing

Fine resizing is composed of horizontal resizing and vertical resizing. It has fractional resizing capability. The image input to fine resizing has size limit of maximum 2047x2047, so does the output of fine resizing. For the sake of cost and speed, the algorithm used in fine resizing is bilinear algorithm. In horizontal resizing working memory enough to fill in two scan-lines is needed. Of course dual buffer or more can be used. For pixel-based image, horizontal or vertical resizing can be trigged if necessarily or disabled if unnecessarily. However, if horizontal/vertical resizing is unnecessary and trigged, then horizontal/vertical resizing must be reset after resizing finishes.

6.2.3 YUV2RGB

Format translation from YUV domain to RGB domain is provided after vertical resizing. The sources of YUV2RGB are image data on the fly after vertical resizing. RGB is in format of 5-6-5. RGB output from YUV2RGB is in format of 5-6-5. That is, one pixel occupies two bytes.

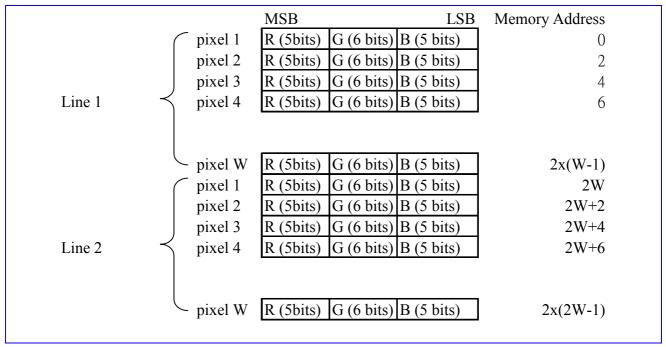


Figure 58 RGB Format

6.2.4 Register Definitions

REGISTER ADDRESS	REGISTER NAME	SYNONYM
RESZ+ 0000h	Image Resizer Configuration Register	RESZ_CFG
RESZ + 0004h	Image Resizer Control Register	RESZ_CON
RESZ + 0008h	Image Resizer Status Register	RESZ_STA
RESZ + 000Ch	Image Resizer Interrupt Register	RESZ_INT
RESZ + 0010h	Image Resizer Source Image Size Register 1	RESZ_SRCSZ1
RESZ + 0014h	Image Resizer Target Image Size Register 1	RESZ_TARSZ1
RESZ + 0018h	Image Resizer Horizontal Ratio Register 1	RESZ_HRATIO1
RESZ + 001Ch	Image Resizer Vertical Ratio Register 1	RESZ_VRATIO1
RESZ + 0020h	Image Resizer Horizontal Residual Register 1	RESZ_HRES1
RESZ + 0024h	Image Resizer Vertical Residual Register 1	RESZ_VRES1
RESZ + 0040h	Image Resizer Fine Resizing Configuration Register	RESZ_FRCFG
RESZ + 005Ch	Image Resizer Pixel-Based Resizing Working Memory Base Address	RESZ_PRWMBASE
RESZ + 0080h	Image Resizer YUV2RGB Configuration Register	RESZ_YUV2RGB
RESZ + 0084h	Image Resizer Target Memory Base Address Register 1 (RGB565)	RESZ_TMBASE1
RESZ + 0088h	Image Resizer Target Memory Base Address Register 2 (RGB565)	RESZ_TMBASE2
RESZ + 00B0h	Image Resizer Information Register 0	RESZ_INFO0
RESZ + 00B8h	Image Resizer Information Register 2	RESZ_INFO2
RESZ + 00BCh	Image Resizer Information Register 3	RESZ_INFO3
RESZ + 00C0h	Image Resizer Information Register 4	RESZ_INFO4
RESZ + 00C4h	Image Resizer Information Register 5	RESZ_INFO5
RESZ + 00D0h	Image Resizer Target Memory Base Address for Y (YUV420	RESZ_TMBASE_Y

	mode)	
RESZ + 00D4h	Image Resizer Target Memory Base Address for U (YUV420 mode)	RESZ_TMBASE_U
RESZ + 00D8h	Image Resizer Target Memory Base Address for V (YUV420 mode)	RESZ_TMBASE_V

RESZ+0000h Image Resizer Configuration Register

RESZ_CFG

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				-			-									
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												PCON				
Type												R/W				
Reset												0				

The register is for global configuration of Image Resizer.

PCON The register bit specifies if pixel-based resizing continues whenever an image finishes processing. Once continuous run for pixel-based resizing is enabled and pixel-based resizing is running, the only way to stop is to reset Capture Resize. If to stop immediately is desired, reset Capture Resize directly. If the last image is desired, set the register bit to '0' first. Then wait until image resizer is not busy again. Finally reset image resizer.

- Single run
- 1 Continuous run

RESZ+0004h Image Resizer Control Register

RESZ CON

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name													OUTR ST	PELV RRST		
Type													R/W	R/W	R/W	
Reset													0	0	0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name													OUTE NA	PELV RENA		
Type													R/W	R/W	R/W	
Reset													0	0	0	

The register is for global control of Image Resizer. Furthermore, software reset will NOT reset all register setting. Remember trigger Image Resizer first before trigger image sources to Image Resizer.

PELHRENA Writing '1' to the register bit will cause pixel-based fine horizontal resizing proceed to work.

However, if horizontal resizing is not necessary, donot write '1' to the register bit.

PELVRENA Writing '1' to the register bit will cause pixel-based fine vertical resizing proceed to work. However,

if vertical resizing is not necessary, donot write '1' to the register bit.

OUTENA Writing '1' to the register bit will cause Output proceed to work.

PELHRRST Writing '1' to the register will cause pixel-based fine horizontal resizing to stop immediately and have

pixel-based fine horizontal resizing keep in reset state. In order to have pixel-based fine horizontal

resizing go to normal state, writing '0' to the register bit.

PELVRRST Writing '1' to the register will pixel-based fine vertical resizing to stop immediately and have

pixel-based fine vertical resizing keep in reset state. In order to have pixel-based fine vertical resizing

go to normal state, writing '0' to the register bit.

OUTRST Writing '1' to the register will force Output to GMC to stop immediately and have Output keep in reset state. In order to have Output go to normal state, writing '0' to the register bit.

RESZ+0008h Image Resizer Status Register

RESZ_STA

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										FRMS TALL	WMF ULL	PELO VRUN	OUTB USY	PELV RBUS Y	PELH RBUS Y	
Type													RO	RO	RO	
Reset													0	0	0	

The register indicates global status of Image Resizer.

PELVRBUSY Pixel-based HR (Horizontal Resizing) Busy Status
PELVRBUSY Pixel-based VR (Vertical Resizing) Busy Status

OUTBUSY Output Busy Status

PELOVRUN Pixel over run (Camera request but resizer not ack)

WMFULL Working memory full

FRMSTALL Working memory not empty when new frame arrives

RESZ+000Ch Image Resizer Interrupt Register

RESZ_INT

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name													Y2RIN T		PELH RINT	
Туре													RC	RC	RC	
Reset													0	0	0	

The register shows up the interrupt status of resizer.

PELHRINT Interrupt for PELHR (Pixel-based Horizontal Resizing). No matter the register bit RESZ_FRCFG.HRINTEN is enabled or not, the register bit will be active whenever PELHR completes. It could be as software interrupt by polling the register bit. Clear it by reading the register.

PELVRINT Interrupt for PELVR (Pixel -based Vertical Resizing). No matter the register bit RESZ_FRCFG.VRINTEN is enabled or not, the register bit will be active whenever PELVR completes. It could be as software interrupt by polling the register bit. Clear it by reading the register.

OUTINT Interrupt for Output to GMC. No matter the register bit RESZ_YUV2RGB.INTEN is enabled or not, the register bit will be active whenever interrupt for completeness of Output to GMC of an image is active. It could be as software interrupt by polling the register bit. Clear it by reading the register.

RESZ+0010h Image Resizer Source Image Size Register 1 RESZ_SRCSZ1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								Н	S							
Type								R/	W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								W	IS							
Type								R/	۱۸/							

The register specifies the size of source image after coarse shrink process. **The allowable maximum size is 2047x2047**.

WS The register field specifies the width of source image after coarse shrink process.

1 The width of source image after coarse shrink process is 1.

2 The width of source image is 2.

. . .

HS The register field specifies the height of source image after coarse shrink process.

- 1 The height of source image after coarse shrink process is 1.
- 2 The height of source image after coarse shrink process is 2.

..

RESZ+0014h Image Resizer Target Image Size Register 1

RESZ_TARSZ1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								Н	T							
Type								R/	W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								W	/T							
Type								R/	W							

The register specifies the size of target image. The allowable maximum size is 2047x2047.

WT The register field specifies the width of target image.

- 1 The width of target image is 1.
- 2 The width of target image is 2.

. . .

HT The register field specifies the height of target image.

- 1 The height of target image is 1.
- **2** The height of target image is 2.

. . .

Note: WT and HT must be even number when YUV420 mode is selected. WT must be even number when RGB565 mode is selected.

RESZ+0018h Image Resizer Horizontal Ratio Register

RESZ_HRATIO1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								RATIO	[31:16]							
Type								R/	W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								RATIO	[15:0]							
Type		•		•		•		R/	W			•	•			

The register specifies horizontal resizing ratio. It is obtained by RESZ_SRCSZ.WS * 2¹⁷ / RESZ_TARSZ.WT.

RESZ+001Ch Image Resizer Vertical Ratio Register 1

RESZ_VRATIO1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								RATIO	[31:16]							
Type								R/	W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								RATIO	[15:0]							
Type								R/	W							

The register specifies vertical resizing ratio. It is obtained by RESZ SRCSZ.HS * 2¹⁷ / RESZ TARSZ.HT.

RESZ+0020h Image Resizer Horizontal Residual Register 1

_	ш	
_	пк	

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								RESII	DUAL							
Type			•	•			•	R/	W				•		•	

The register specifies horizontal residual. It is obtained by RESZ_SRCSZ.WS % RESZ_TARSZ.WT The allowable maximum value is 2046.

RESZ+0024h Image Resizer Vertical Residual Register 1

RESZ_VRES1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								RESI	DUAL							
Type			•			•		R/	W	•	•			•		

The register specifies vertical residual. It is obtained by RESZ_SRCSZ.HS % RESZ_TARSZ.HT. The allowable maximum value is 2046.

RESZ+0040h

Image Resizer Fine Resizing Configuration Register

RESZ_FRCFG

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name											WN	ISZ				
Type											R/	W				
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							PC	SF1			VRINT EN	HRIN TEN			AVG	VRSS
Type							R/	W			R/W	R/W			R/W	R/W
Reset							0	0			0	0			0	0

The register specifies various setting of control for fine resizing, including of horizontal and vertical resizing. **Note that** all parameters must be set before horizontal and vertical resizing proceeds.

- **VRSS** The register bit specifies whether subsampling for vertical resizing is enabled. For throughput issue, vertical resizing may be simplified by subsampling lines vertically. The register bit is only valid in pixel-based mode.
 - **0** Subsampling for vertical resizing is disabled.
 - 1 Subsampling for vertical resizing is enabled.

AVG Average if src/tar = 1/n

- Average is disabled.
- 1 Average is enabled.
- **HRINTEN** HR (Horizontal Resizing) Interrupt Enable. When interrupt for HR is enabled, interrupt will arise whenever HR finishes.
 - Interrupt for HR is disabled.
 - 1 Interrupt for HR is enabled.
- **VRINTEN** VR (Vertical Resizing) Interrupt Enable. When interrupt for VR is enabled, interrupt will arise whenever VR finishes.
 - Interrupt for VR is disabled.
 - 1 Interrupt for VR is enabled.
- PCSF1 Coarse Shrinking Factor 1 for pixel-based resizing. Only horizontal coarse shrinking is supported for pixel-based resizing.
 - **00** No coarse shrinking.
 - **01** Image width becomes 1/2 of original size after coarse shrink pass.
 - 10 Image width becomes 1/4 of original size after coarse shrink pass.
 - 11 Image width becomes 1/8 of original size after coarse shrink pass.

WMSZ It stands for Working Memory SiZe. The register specifies how many lines after horizontal resizing can be filled into working memory. If dual line buffer is used, horizontal resizing and vertical resizing can execute parallel. Its minimum value is 4.

- Working memory for each color component in block-based mode is 4.
- Working memory for each color component in block-based mode is 5.
- Working memory for each color component in block-based mode is 6.
- 7 Working memory for each color component in block-based mode is 7.

RESZ+005Ch

Image Resizer Pixel-Based Resizing Working Memory Base Address Register

RESZ PRWMBASE

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							PR	WMBA:	SE [31:	16]						
Type								R/	W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							PR	WMBA	SE [15	:0]						
Type			•	•				R/	W		•	•	•	•	•	

The register specifies the base address of working memory in pixel-based resizing mode. It must be byte-aligned.

RESZ+0080h

Image Resizer YUV2RGB Configuration Register

RESZ_YUV2RGB

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	INTEN															MOD E
Туре	R/W															R/W
Reset	0															0

The register specifies various setting of control for YUV2RGB. Note that ALL parameters must be set before writing '1' to the register bit RESZ CONN.YUV2RGBENA.

INTEN Interrupt Enable. When interrupt for YUV2RGB is enabled, interrupt will arise whenever YUV2RGB finishes.

- Interrupt for YUV2RGB is disabled.
- 1 Interrupt for YUV2RGB is enabled.

MODE Output mode.

- RGB565 output.
- YUV420 output.

RESZ+0084h

Image Resizer Target Memory Base Address Register

RESZ TMBASE1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							TN	IBASE	1 [31:1	6]						
Type								R/	W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
Type								R/W								

The register specifies the base address of target memory for RGB565 mode. Target memory is memory space for destination of YUV2RGB. It' must be half-word (2 bytes) aligned. RESZ TMBASE1 and RESZ TMBASE2 are

auto-switched by hardware, so both two registers should be filled. If dual buffer is not required, please fill these two registers with the same value.

RESZ+0088h Image Resizer Target Memory Base Address Register

RESZ_TMBASE2

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							TN	IBASE	2 [31:1	6]						
Type								R/	W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							TMB	ASE2 [15:1]							
Type		•		•				R/W	•			•	•	•		

The register specifies the base address of target memory for RGB565 mode. Target memory is memory space for destination of YUV2RGB. It' must be half-word (2 bytes) aligned. RESZ_TMBASE1 and RESZ_TMBASE2 are auto-switched by hardware, so both two registers should be filled. If dual buffer is not required, please fill these two registers with the same value.

RESZ+0090h Image Resizer Debug Configuration Register

RESZ DBGCFG

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	Al	UTORS	TWID	ГН												
Type		R/	W													
Reset		(0													
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				AUTO RST	NODB	PHR1	PVR1					-				
Type				R/W	R/W	R/W	R/W									
Reset				0	0	0	1			•	•					

The register is used to help debug.

AUTORSTWIDTH Pulse-width of auto reset signal

AUTORST Enable auto reset mechanism

- O Disable auto reset
- 1 Enable auto reset, image resizer will auto reset and restart when new frame comes while previous frame not completed yet.

NODB Force register not double buffered

- No double buffered,
- 1 Double buffered, registers are effective when vsync arrives or RESZ_CON.ena is set to 1.

PVR1 Force vertical resizing to execute even though it's not necessary.

- Normal operation
- 1 Force vertical resizing to execute even though it's not necessary.

PHR1 Force horizontal resizing to execute even though it's not necessary.

- 0 Normal operation
- 1 Force horizontal resizing to execute even though it's not necessary.

RESZ+00B0h Image Resizer Information Register 0

RESZ_INFO0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								INFO[31:16]							
Type								R	0							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								INFO	[15:0]							
Type								R	0							

The register shows the max working memory really used

INFO[15:00]

max working memory counter

RESZ+00B8 Image Resizer Information Register 2

RESZ_INFO2

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								INFO[31:16]							
Type								R	0							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								INFO	[15:0]							
Type			•					R	0	•	•		•	•		

The register shows progress of pixels received from BLKCS in fine resizing stage.

INFO[31:16] Indicate the account of vertical lines received from BLKCS in fine resizing stage.

INFO[15:00] Indicate the account of horizontal pixels received from BLKCS in fine resizing stage. Note that it will become zero when resizing completes.

RESZ+00BC Image Resizer Information Register 3

RESZ_INFO3

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								INFO[31:16]							
Type								R	0							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								INFO	[15:0]							
Type								R	0							

The register shows progress of horizontal resizing in fine resizing stage.

INFO[31:16] Indicate the account of horizontal resizing in fine resizing stage in horizontal direction.

INFO[15:00] Indicate the account of horizontal resizing in fine resizing stage in vertical direction.

RESZ+00C0 Image Resizer Information Register 4

RESZ_INFO4

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								INFO[31:16]							
Type								R	0							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								INFO	[15:0]							
Type		•				•		R	0	•				•		

The register shows progress of vertical resizing in fine resizing stage.

INFO[31:16] Indicate the account of vertical resizing in fine resizing stage in horizontal direction.

INFO[15:00] Indicate the account of vertical resizing in fine resizing stage in vertical direction.

RESZ+00C4 Image Resizer Information Register 5

RESZ_INFO5

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								INFO[31:16]							
Type								R	0							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								INFO	[15:0]							
Type		•	•		•	•		R	0				•		•	

The register shows progress of YUV-to-RGB

INFO[31:16] Indicate YUV-to-RGB in horizontal direction.

INFO[15:00] Indicate YUV-to-RGB in vertical direction.

RESZ+00D0h

Image Resizer YUV420 Y-Component Target Memory Base Address Register

RESZ_TMBASE_Y

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							TN	IBASE.	_Y[31:1	16]						
Type								R/	W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						TI	MBASE	_Y[15:	2]							
Type				•			R/	W								

The register specifies the base address of YUV420 output for Y-component. It should be word-aligned. It's only useful in YUV420 mode.

RESZ+00D4h

Image Resizer YUV420 U-Component Target Memory Base Address Register

RESZ_TMBASE_U

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							TM	BASE	_U[31:	16]						
Type								R/	W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		TMBASE_U[15:2]														
Type							R/	W								

The register specifies the base address of YUV420 output for U-component. It should be word-aligned. It's only useful in YUV420 mode.

RESZ+00D8h

Image Resizer YUV420 V-Component Target Memory Base Address Register

RESZ_TMBASE_V

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							TN	IBASE	_V[31:1	[6]						
Type								R/	W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						TI	MBASE	_V[15:	2]							
Type							R/	W								

The register specifies the base address of YUV420 output for V-component. It should be word-aligned. It's only useful in YUV420 mode.

6.2.5 Application Notes

- Working memory. Maximum value is 1023 and minimum 4. **Remember that each pixel occupies 2 bytes**. Thus minimum requirement for working memory in pixel-based resizing is (pixel number in a line)x2x4 bytes.
- Configuration procedure for block-based image sources

```
RESZ_CFG = 0x10 (continuous), 0x0 (single run);
RESZ_TMBASE1 = target memory 1 base address;
RESZ_TMBASE2 = target memory 2 base address;
RESZ_TMBASE_Y = target memory for Y base address (YUV420 mode);
RESZ_TMBASE_U = target memory for U base address (YUV420 mode);
RESZ_TMBASE_V = target memory for V base address (YUV420 mode);
RESZ_SRCSZ = source image size;
RESZ_TARSZ = target image size;
RESZ_HRATIO = horizontal ratio;
RESZ_VRATIO = vertical ratio;
RESZ_HRES = horizontal residual;
RESZ_VRES = vertical residual;
```



```
RESZ_FRCFG = working memory size, interrupt enable;
RESZ_PRWMBASE = working memory base;
RESZ_YUV2RGB = Output mode select, interrupt enable;
RESZ_CON = 0xf;
```

6.3 NAND FLASH interface

6.3.1 General description

MT6225 provides NAND flash interface.

The NAND FLASH interface support features as follows:

- ECC (Hamming code) acceleration capable of one-bit error correction or two bits error detection.
- Programmable ECC block size. Support 1, 2 or 4 ECC block within a page.
- Word/byte access through APB bus.
- Direct Memory Access for massive data transfer.
- Latch sensitive interrupt to indicate ready state for read, program, erase operation and error report.
- Programmable wait states, command/address setup and hold time, read enable hold time, and write enable recovery time.
- Support page size: 512(528) bytes and 2048(2112) bytes.
- Support 2 chip select for NAND flash parts.
- Support 8/16 bits I/O interface.

The NFI core can automatically generate ECC parity bits when programming or reading the device. If the user approves the way it stores the parity bits in the spare area for each page, the AUTOECC mode can be used. Otherwise, the user can prepare the data (may contains operating system information or ECC parity bits) for the spare area with another arrangement. In the former case, the core can check the parity bits when reading from the device. The ECC module features the hamming code, which is capable of correcting one bit error or detecting two bits error within one ECC block.

6.3.2 Register definition

NFI+0000h NAND flash access control register

NIE	'I A	_	•			N
NH	·	1	G	G	u	N

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		LCD2	NAND				C2R		W	2R	W	Ή	W:	ST	RL	T
Type		R/	W				R/W		R/	W	R/	W	R/	W	R/	W
Reset		(0		()	()	()	C)	

This is the timing access control register for the NAND FLASH interface. In order to accommodate operations for different system clock frequency ranges from 13MHz to 52MHz, wait states and setup/hold time margin can be configured in this register.

C2R The field represents the minimum required time from NCEB low to NREB low.

W2R The field represents the minimum required time from NWEB high to NREB low. It's in unit of 2T. So the actual time ranges from 2T to 8T in step of 2T.

WH Write-enable hold-time.

The field specifies the hold time of NALE, NCLE, NCEB signals relative to the rising edge of NWEB. This

field is associated with **WST** to expand the write cycle time, and is associated with **RLT** to expand the read cycle time.

RLT Read Latency Time

The field specifies how many wait states to be inserted to meet the requirement of the read access time for the device.

- 00 No wait state.
- **01** 1T wait state.
- 10 2T wait state.
- 11 3T wait state.

WST Write Wait State

The field specifies the wait states to be inserted to meet the requirement of the pulse width of the NWEB signal.

- **00** No wait state.
- **01** 1T wait state.
- **10** 2T wait state.
- 11 3T wait state.

LCD2NAND Arbitration Wait State

The field specifies the wait states to be inserted for the APB arbitrator when bus user changes.

NFI +0004h NFI page format control register

NFI PAGEFMT

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								B16E N		EC	CBLKS	IZE		ADRM ODE	PS	ZE
Type								R/W			R/W			R/W	R/	W
Reset								0			0			0	()

This register manages the page format of the device. It includes the bus width selection, the page size, the associated address format, and the ECC block size.

B16EN 16 bits I/O bus interface enable.

ECCBLKSIZE ECC block size.

This field represents the size of one ECC block. The hardware-fuelled ECC generation provides 2 or 4 blocks within a single page.

- ECC block size: 128 bytes. Used for devices with page size equal to 512 bytes.
- 1 ECC block size: 256 bytes. Used for devices with page size equal to 512 bytes.
- 2 ECC block size: 512 bytes. Used for devices with page size equal to 512 (1 ECC block) or 2048 bytes (4 ECC blocks).
- **3** ECC block size: 1048 bytes. Used for devices with page size equal to 2048 bytes.
- **4~** Reserved.

ADRMODE Address mode. This field specifies the input address format.

- O Normal input address mode, in which the half page identifier is not specified in the address assignment but in the command set. As in **Table 36**, A7 to A0 identifies the byte address within half a page, A12 to A9 specifies the page address within a block, and other bits specify the block address. The mode is used mostly for the device with 512 bytes page size.
- 1 Large size input address mode, in which all address information is specified in the address assignment rather than in the command set. As in **Table 37**, A11 to A0 identifies the byte address within a page. The mode is used for the device with 2048 bytes page size and 8bits I/O interface.
- 2 Large size input address mode. As in **Table 37**, A10 to A0 identifies the column address within a page. The mode is used for the device with 2048 byte page size and 16bits I/O interface.

	NLD7	NLD6	NLD5	NLD4	NLD3	NLD2	NLD1	NLD0
First cycle	A7	A6	A5	A4	A3	A2	A1	A0
Second cycle	A16	A15	A14	A13	A12	A11	A10	A9

Table 36 Page address assignment of the first type (ADRMODE = 0)

	NLD7	NLD6	NLD5	NLD4	NLD3	NLD2	NLD1	NLD0
First cycle	A7	A6	A5	A4	A3	A2	A1	A0
Second cycle	0	0	0	0	A11	A10	A9	A8

Table 37 Page address assignment of the second type (ADRMODE = 1 or 2)

PSIZE Page Size.

The field specifies the size of one page for the device. Two most widely used page size are supported.

- **0** The page size is 512 bytes or 528 bytes (including 512 bytes data area and 16 bytes spare area).
- 1 The page size is 2048 bytes or 2112 bytes (including 2048 bytes data area and 64 bytes spare area).
- **2~** Reserved.

NFI +0008h Operation control register

NFI_OPCON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			NC)B				SRD			EWR	ERD			BWR	BRD
Type			W	/R				WO			WO	WO			R/W	R/W
Reset			()				0			0	0			0	0

This register controls the burst mode and the single of the data access. In burst mode, the core supposes there are one or more than one page of data to be accessed. On the contrary, in single mode, the core supposes there are only less than 4 bytes of data to be accessed.

- BRD Burst read mode. Setting this field to be logic-1 enables the data read operation. The NFI core will issue read cycles to retrieve data from the device when the data FIFO is not full or the device is not in the busy state. The NFI core supports consecutive page reading. A page address counter is built in. If the reading reaches to the end of the page, the device will enter the busy state to prepare data of the next page, and the NFI core will automatically pause reading and remain inactive until the device returns to the ready state. The page address counter will restart to count from 0 after the device returns to the ready state and start retrieving data again.
- BWR Burst write mode. Setting to be logic-1 enables the data burst write operation for DMA operation. Actually the NFI core will issue write cycles once if the data FIFO is not empty even without setting this flag. But if DMA is to be utilized, the bit should be enabled. If DMA is not to be utilized, the bit didn't have to be enabled.
- ERD ECC read mode. Setting to be logic-1 initializes the ECC checking and correcting for the current page. The ECC checking is only valid when a full ECC block has been read.
- **EWR** Setting to be logic-1 initializes the ECC parity generation for the current page. The ECC code generation is only valid when a full ECC block has been programmed.
- SRD Setting to be logic-1 initializes the one-shot data read operation. It's mainly used for read ID and read status command, which requires no more than 4 read cycles to retrieve data from the device.
- NOB The field represents the number of bytes to be retrieved from the device in single mode, and the number of bytes per AHB transaction in both single and burst mode.
 - Read 4 bytes from the device.
 - 1 Read 1 byte from the device.
 - 2 Read 2 bytes from the device.
 - **3** Read 3 bytes from the device.

NFI +000Ch Command register

NFI CMD

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												CN	/ID			

Туре					R/W
Reset					45

This is the command input register. The user should write this register to issue a command. Please refer to device datasheet for the command set. The core can issue some associated commands automatically. Please check out register **NFI_CON** for those commands.

CMD Command word.

NFI +0010h Address length register

NFI ADDNOB

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														AD	DR_N	OB
Type														ADDR_NOB R/W		
Reset														ADDIT		

This register represents the number of bytes corresponding to current command. The valid number of bytes ranges from 1 to 5. The address format depends on what device to be used and what commands to be applied. The NFI core is made transparent to those different situations except that the user has to define the number of bytes.

The user should write the target address to the address register **NFI_ADDRL** before programming this register.

ADDR_NOB Number of bytes for the address

NFI +0014h Least significant address register

NFI_ADDRL

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				ADI	DR3							ADI	DR2			
Type				R/	W							R/	W			
Reset				()							()			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				ADI	DR1							ADI	DR0			
Type				R/	W							R/	W			
Reset			•	()			•			•	()		•	

This defines the least significant 4 bytes of the address field to be applied to the device. Since the device bus width is 1 byte, the NFI core arranges the order of address data to be least significant byte first. The user should put the first address byte in the field **ADDR0**, the second byte in the field **ADDR1**, and so on.

ADDR3 The fourth address byte.

ADDR2 The third address byte.

ADDR1 The second address byte.

ADDR0 The first address byte.

NFI +0018h Most significant address register

NFI ADDRM

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												ADI	DR4			
Type												R/	W			
Reset										•	•	()		•	

This register defines the most significant byte of the address field to be applied to the device. The NFI core supports address size up to 5 bytes. Programming this register implicitly indicates that the number of address field is 5. In this case, the NFI core will automatically set the **ADDR_NOB** to 5.

ADDR4 The fifth address byte.

NFI +001Ch Write data buffer

NFI_DATAW

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				DV	V3							DV	V2			
Type				R/	W							R/	W			
Reset				()							0)			

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				DV	V1							DV	VO			
Type				R/	W							R/	W			
Reset				()							C)			

This is the write port of the data FIFO. It supports word access. The least significant byte **DW0** is to be programmed to the device first, then **DW1**, and so on.

If the data to be programmed is not word aligned, byte write access will be needed. Instead, the user should use another register **NFI_DATAWB** for byte programming. Writing a word to **NFI_DATAW** is equivalent to writing four bytes **DW0**, **DW1**, **DW2**, **DW3** in order to **NFI_DATAWB**. Be reminded that the word alignment is from the perspective of the user. The device bus is byte-wide. According to the flash's nature, the page address will wrap around once it reaches the end of the page.

DW3 Write data byte 3.

DW2 Write data byte 2.

DW1 Write data byte 1.

DW0 Write data byte 0.

NFI +0020h Write data buffer for byte access

NFI_DATAWB

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
Name												DV	V0							
Type									R/W											
Reset												()							

This is the write port for the data FIFO for byte access.

DW0 Write data byte.

NFI +0024h Read data buffer

NFI DATAR

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				DF	₹3							DI	₹2			
Type				R	0							R	0			
Reset				()							()			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				DF	र1							DI	₹0			
Type				R	0							R	0			
Reset				()							()			

This is the read port of the data FIFO. It supports word access. The least significant byte **DR0** is the first byte read from the device, then **DR1**, and so on.

DR3 Read data byte 3.

DR2 Read data byte 2.

DR1 Read data byte 1.

DR0 Read data byte 0.

NFI +0028h Read data buffer for byte access

NFI_DATARB

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												DI	₹0			
Type												R	0			
Reset												()			

This is the read port of the data FIFO for byte access.

NFI +002Ch NFI status

NFI PSTA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Name					BUSY				DATA W	DATA R	ADDR	CMD
Type					RO				R/W	R/W	R/W	R/W
Reset			_	_	0*		_	•	0	0	0	0

This register represents the NFI core control status including command mode, address mode, data program and read mode. The user should poll this register for the end of those operations.

*The value of **BUSY** bit depends on the GPIO configuration. If GPIO is configured for NAND flash application, the reset value should be 0, which represents that NAND flash is in idle status. When the NAND flash is busy, the value will be 1.

BUSY Synchronized busy signal from the NAND flash. It's read-only.

DATAW The NFI core is in data write mode.

DATAR The NFI core is in data read mode.

ADDR The NFI core is in address mode.

CMD The NFI core is in command mode.

NFI +0030h FIFO control

NFI FIFOCON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											RESE T	FLUS H	WR_F ULL	WR_E MPTY	_	RD_E MPTY
Type											WO	WO	RO	RO	RO	RO
Reset											0	0	0	1	0	1

The register represents the status of the data FIFO.

RESET Reset the state machine and data FIFO.

FLUSH Flush the data FIFO.

WR_FULL Data FIFO full in burst write mode.

WR_EMPTY Data FIFO empty in burst write mode.RD_FULL Data FIFO full in burst read mode.RD_EMPTY Data FIFO empty in burst read mode.

NFI +0034h NFI control

NFI_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	BYTE _RW				MULT IPAG E_CO N	READ _CON	PROG RAM_ CON	ERAS E_CO N			SW_P ROGS PARE _EN	I_PA	ECC_	ECC	DIVIA_	DMA_ RD_E N
Type	R/W				R/W	R/W	R/W	R/W			R/W	R/W	R/W	R/W	R/W	R/W
Reset	0				0	0	0	0			0	0	0	0	0	0

The register controls the DMA and ECC functions. For all field, Setting to be logic-1 represents enabled, while 0 represents disabled.

BYTE_RW Enable APB byte access.

MULTIPAGE_CON This bit represents that the first-cycle command for read operation (00h) can be automatically performed to read the next page automatically. Automatic ECC decoding flag **AUTOECC_DEC_EN** should also be enabled for multiple page access.

READ_CON This bit represents that the second-cycle command for read operation (30h) can be automatically performed.

PROGRAM_CON This bit represents that the second-cycle command for page program operation (10h) can be automatically performed after the data for the entire page (including the spare area) has been written. It should be associated with automatic ECC encoding mode enabled.

ERASE_CON The bit represents that the second-cycle command for block erase operation (D0h) can be automatically performed after the block address is latched.

SW_PROGSPARE_EN If enabled, the NFI core allows the user to program or read the spare area directly. Otherwise, the spare area can be programmed or read by the core.

MULTI_PAGE_RD_EN Multiple page burst read enable. If enabled, the burst read operation could continue through multiple pages within a block. It's also possible and more efficient to associate with DMA scheme to read a sector of data contained within the same block.

AUTOECC_ENC_EN Automatic ECC encoding enable. If enabled, the ECC parity is written automatically to the spare area right after the end of the data area. If **SW_PROGSPARE_EN** is set, however, the mode can't be enabled since the core can't access the spare area.

AUTOECC_DEC_EN Automatic ECC decoding enabled, the error checking and correcting are performed automatically on the data read from the memory and vice versa. If enabled, when the page address reaches the end of the data read of one page, additional read cycles will be issued to retrieve the ECC parity-check bits from the spare area to perform checking and correcting.

DMA_WR_EN This field is used to control the activity of DMA write transfer. **DMA_RD_EN** This field is used to control the activity of DMA read transfer.

NFI +0038h Interrupt status register

NFI INTR

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				BUSY _RET URN	ERR_ COR3	ERR_ COR2	ERR_ COR1	ERR_ COR0	ERR_ DET3	ERR_ DET2	ERR_ DET1	ERR_ DET0	ERAS E_CO MPLE TE	RESE T_CO MPLE TE	WR_C OMPL ETE	RD CO MPLE TE
Type				RC	RC	RC	RC	RC	RC	RC	RC	RC	RC	RC	RC	RC
Reset				0	0	0	0	0	0	0	0	0	0	0	0	0

The register indicates the status of all the interrupt sources. Read this register will clear all interrupts.

BUSY_RETURN Indicates that the device state returns from busy by inspecting the R/B# pin.

ERR_COR3 Indicates that the single bit error in ECC block 3 needs to be corrected.

ERR COR2 Indicates that the single bit error in ECC block 2 needs to be corrected.

ERR_COR1 Indicates that the single bit error in ECC block 1 needs to be corrected.

ERR_COR0 Indicates that the single bit error in ECC block 0 needs to be corrected.

ERR DET3 Indicates an uncorrectable error in ECC block 3.

ERR_DET2 Indicates an uncorrectable error in ECC block 2.

ERR_DET1 Indicates an uncorrectable error in ECC block 1.

ERR DETO Indicates an uncorrectable error in ECC block 0.

ERASE_COMPLETERESET_COMPLETE

Indicates that the erase operation is completed.

Indicates that the reset operation is completed.

Indicates that the write operation is completed.

RD_COMPLETE Indicates that the single page read operation is completed.

NFI +003Ch Interrupt enable register

NFI INTR EN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	ERR_ COR3 _EN	ERR_ COR2 _EN	ERR_ COR1 _EN		ERR_ DET3 _EN	ERR_ DET2 _EN	ERR_ DET1 _EN			BUSY _RET URN_ EN	ERR_ COR_ EN	ERR_ DET_ EN	ERAS E_CO MPLE TE_E N	RESE T_CO MPLE TE_E N		RD_ COM PLET E_EN
Type	R/W	R/W	R/W		R/W	R/W	R/W			R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0		0	0	0			0	0	0	0	0	0	0

This register controls the activity for the interrupt sources.

ERR_COR1_EN

The error correction interrupt enable for the 2nd ECC block.

ERR_COR2_EN

The error correction interrupt enable for the 3rd ECC block.

ERR_COR3_EN The error correction interrupt enable for the 4th ECC block.

ERR_DET1_EN

The error detection interrupt enable for the 2nd ECC block.

The error detection interrupt enable for the 3rd ECC block.

ERR_DET3_EN

The error detection interrupt enable for the 4th ECC block.

BUSY_RETURN_EN The busy return interrupt enable.

ERR_COR_ENThe error correction interrupt enable for the 1st ECC block. **ERR_DET_EN**The error detection interrupt enable for the 1st ECC block.

ERASE_COMPLETE_EN The erase completion interrupt enable. **RESET_COMPLETE_EN** The reset completion interrupt enable.

WR_COMPLETE_EN The single page write completion interrupt enable.

RD_COMPLETE_EN The single page read completion interrupt enable.

NFI+0040h NAND flash page counter

NFI_PAGECNT

R

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												CN	TR			
Type												R/	W			
Reset												C)			

The register represents the number of pages that the NFI has read since the issuing of the read command. For some devices, the data can be read consecutively through different pages without the need to issue another read command. The user can monitor this register to know current page count, particularly when read DMA is enabled.

CNTR The page counter.

NFI+0044h NAND flash page address counter

NFI_ADDRCNT

Ь

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Name										CN	TR							
Type						RW												
Reset						•	•	•	•	()	•	•	•	•			

The register represents the current read/write address with respect to initial address input. It counts in unit of byte. In page read and page program operation, the address should be the same as that in the state machine in the target device.

NFI supports the address counter up to 4096 bytes.

CNTR The address count.

NFI_ SYM0_ADDR

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											SY	M				
Type											R	0				
Reset											C)				

This register identifies the address within ECC block 0 that a single bit error has been detected.

SYM The byte address of the error-correctable bit.

NFI +0054h ECC block 1 parity error detect syndrome address

NFI_SYM1_ADD R

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name							SYM										
Type								RO									
Reset							0										

This register identifies the address within ECC block 1 that a single bit error has been detected.

SYM The byte address of the error-correctable bit.

NFI +0058h ECC block 2 parity error detect syndrome address

NFI_SYM2_ADD

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name							SYM										
Type							RO										
Reset							0										

This register identifies the address within ECC block 2 that a single bit error has been detected.

SYM The byte address of the error-correctable bit.

NFI_SYM3_ADD

D

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name							SYM										
Type							RO										
Reset							0										

This register identifies the address within ECC block 3 that a single bit error has been detected.

SYM The byte address of the error-correctable bit.

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name				EC)3			ED2									
Type				R	0			RO									
Reset				C)			0									
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name				EC)1				ED0								
Type	RO									RO							
Reset	0									0							

This register represents the syndrome word for the corrected ECC block 0. To correct the error, the user should first read **NFI_SYM0_ADDR** for the address of the correctable word, and then read **NFI_SYM0_DAT**, directly XOR the syndrome word with the data word to obtain the correct word.

NFI +0064h ECC block 1 parity error detect syndrome word

NFI_SYM1_DAT

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
Name				E	03			ED2										
Type				R	0			RO										
Reset				()			0										
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Name				E	01				ED0									
Type		RO									RO							
Reset	0									0								

This register represents the syndrome word for the corrected ECC block 0. To correct the error, the user should first read **NFI_SYM1_ADDR** for the address of the correctable word, and then read **NFI_SYM1_DAT**, directly XOR the syndrome word with the data word to obtain the correct word.

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				E)3				ED2							
Type		RO								RO						
Reset				C)				0							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				E)1				ED0							
Type		RO							RO							
Reset	0											()			

This register represents the syndrome word for the corrected ECC block 0. To correct the error, the user should first read **NFI_SYM2_ADDR** for the address of the correctable word, and then read **NFI_SYM2_DAT**, directly XOR the syndrome word with the data word to obtain the correct word.

_						_			_					_		
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				E	03							EI	02			
Type				R	0							R	0			
Reset		0							0							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				E	01				ED0							
Type		RO							RO							
Reset	0								0							

This register represents the syndrome word for the corrected ECC block 0. To correct the error, the user should first read **NFI_SYM3_ADDR** for the address of the correctable word, and then read **NFI_SYM3_DAT**, directly XOR the syndrome word with the data word to obtain the correct word.\

NFI +0070h NFI ECC error detect indication register

NF	ΙE	RR	DE.	Ī

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name													EBLK 3	EBLK	EBLK 1	EBLK 0
Туре													RO	RO	RO	RO
Reset													0	0	0	0

This register identifies the block in which an uncorrectable error has been detected.

NFI +0080h NFI ECC parity word 0

NFI_PAR0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										PAR						
Type										RO						
Reset										0						

This register represents the ECC parity for the ECC block 0. It's calculated by the NFI core and can be read by the user. It's generated when writing or reading a page.

Register Address	Register Function	Acronym
NFI +0080h	NFI ECC parity word 0	NFI_PAR0
NFI +0084h	NFI ECC parity word 1	NFI_PAR1
NFI +0088h	NFI ECC parity word 2	NFI_PAR2

NFI +008Ch	NFI ECC parity word 3	NFI_PAR3
NFI +0090h	NFI ECC parity word 4	NFI_PAR4
NFI +0094h	NFI ECC parity word 5	NFI_PAR5
NFI +0098h	NFI ECC parity word 6	NFI_PAR6
NFI +009Ch	NFI ECC parity word 7	NFI_PAR7

Table 38 NFI parity bits register table

NFI+0100h NFI device select register

NFI_CSEL

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																CSEL
Type																R/W
Reset																0

The register is used to select the target device. It decides which CEB pin to be functional. This is useful while using the high-density device.

CSEL Chip select. The value defaults to 0.

- **0** Device 1 is selected.
- 1 Device 2 is selected.

6.3.3 Device programming sequence

This section lists the program sequences to successfully use any compliant devices.

For block erase

- 1. Enable erase complete interrupt (NFI_INTR_EN = 8h).
- 2. Write command (NFI CMD = 60h).
- 3. Write block address (NFI ADDR).
- 4. Set the number of address bytes (NFI ADDRNOB).
- 5. Check program status (NFI_PSTA) to see whether the operation has been completed. Omitted if ERASE_CON has been set.
- 6. Write command (NFI_CMD = D0h). Omitted if ERASE_CON has been set.
- 7. Check the erase complete interrupt.

For status read

- 1. Write command (NFI CMD = 70h).
- 2. Set single word read for 1 byte (NFI_OPCON = 1100h).
- 3. Check program status (NFI PSTA) to see whether the operation has been completed.
- 4. Read single byte (NFI_DATAR).

For page program

- 1. Enable write complete interrupt (NFI INTR EN = 2h).
- 2. Set DMA mode, and hardware ECC mode (NFI CON = Ah).
- 3. Write command (NFI_CMD = 80h).
- 4. Write page address (NFI_ADDR).

- 5. Set the number of address bytes (NFI_ADDRNOB).
- 6. Set burst write (NFI OPCON = 2h).
- 7. In DMA mode, the signal DMA_REQ controls the access. The user can also check the status of the FIFO (NFI_FIFOCON) and write a pre-specified number of data whenever the FIFO is not full and until the end of page is reached.
- 8. Check program status (NFI PSTA) to see whether all operation has been completed.
- 9. Set ECC parities write. Omitted if hardware ECC mode has been set.
- 10. Check program status (NFI PSTA) to see whether the above operation has been completed.
- 11. Write command (NFI_CMD = 10h). Omitted if PROGRAM_CON has been set.
- 12. Check the program complete interrupt.

For page read

- 1. Enable busy ready, read complete, ECC correct indicator, and ECC error indicator interrupt. (NFI_INTR_EN = 41h).
- 2. Set DMA mode, and hardware ECC mode. (NFI_CON = 5h).
- 3. Write command (NFI CMD = 00h).
- 4. Write page address (NFI_ADDR).
- 5. Set the number of address bytes (NFI_ADDRNOB).
- 6. Check busy ready interrupt.
- 7. Set burst read (NFI_OPCON = 1h).
- 8. In DMA mode, the signal DMA_REQ controls the access. The user can also check the status of the FIFO (NFI_FIFOCON) and read a pre-specified number of data whenever the FIFO is not empty and until the end of page is reached.
- 9. Set ECC parities check. Omitted if hardware ECC mode has been set.
- 10. Check program status (NFI PSTA) or check ECC correct and error interrupt.
- 11. Read the ECC correction or error information.

6.3.4 Device timing control

This section illustrates the timing diagram.

The ideal timing for write access is listed as listed in **Table 39**.

Parame ter	Description	Timing specification	Timing at 13MHz (WST, WH) = (0,0)	Timing at 26MHz (WST, WH) = (0,0)	Timing at 52MHz (WST, WH) = (1,0)
T _{WC1}	Write cycle time	3T + WST + WH	230.8ns	105.4ns	76.9ns
T _{WC2}	Write cycle time	2T + WST + WH	153.9ns	76.9ns	57.7ns
T _{DS}	Write data setup time	1T + WST	76.9ns	38.5ns	38.5ns
T _{DH}	Write data hold time	1T + WH	76.9ns	38.5ns	19.2ns
T _{WP}	Write enable time	1T + WST	76.9ns	38.5ns	38.5ns
T _{WH}	Write high time	1T + WH	76.9ns	38.5ns	19.2ns
T _{CLS}	Command latch enable setup time	1T	76.9ns	38.5ns	19.2ns

T _{CLH}	Command latch enable hold time	1T + WH	76.9ns	38.5ns	19.2ns
T _{ALS}	Address latch enable setup time	1T	76.9ns	38.5ns	19.2ns
T _{ALH}	Address latch enable hold time	1T + WH	76.9ns	38.5ns	19.23ns
Fwc	Write data rate	1 / T _{WC2}	6.5Mbytes/s	13Mbytes/s	17.3Mbytes/s

Table 39 Write access timing

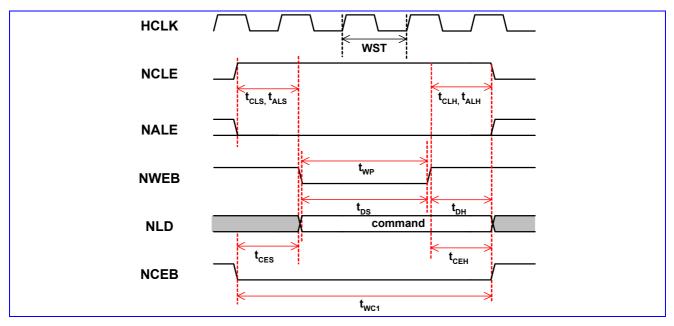


Figure 59 Command input cycle (1 wait state).

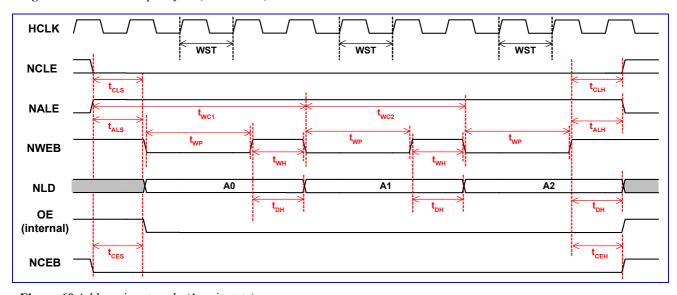


Figure 60 Address input cycle (1 wait state)

Figure 61 Consecutive data write cycles (1 wait state, 0 hold time extension)

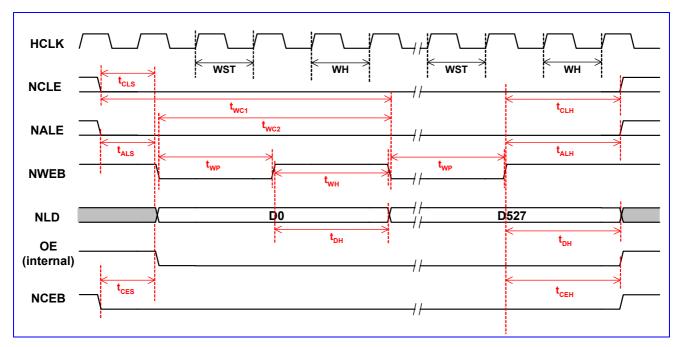


Figure 62 Consecutive data write cycles (1 wait state, 1 hold time extension)

The ideal timing for read access is as listed in Table 28.

Parame ter	Description	Timing specification	Timing at 13MHz (RLT, WH) = (0,0)	Timing at 26MHz (RLT, WH) = (1,0)	Timing at 52MHz (RLT, WH) = (2,0)
T _{RC1}	Read cycle time	3T + RLT + WH	230.8ns	153.8ns	96.2ns
T _{RC2}	Read cycle time	2T + RLT + WH	153.9ns	115.4ns	76.9ns
T _{DS}	Read data setup time	1T + RLT	76.9ns	76.9ns	57.7ns
Т _{DH}	Read data hold time	1T + WH	76.9ns	38.5ns	19.2ns
T _{RP}	Read enable time	1T + RLT	76.9ns	76.9ns	57.7ns
T _{RH}	Read high time	1T + WH	76.9ns	38.5ns	19.2ns
T _{CLS}	Command latch enable setup time	1T	76.9ns	38.5ns	19.2ns
T _{CLH}	Command latch enable hold time	1T + WH	76.9ns	38.5ns	19.2ns

T _{ALS}	Address latch enable setup time	1T	76.9ns	38.5ns	19.2ns
T _{ALH}	Address latch enable hold time	1T + WH	76.9ns	38.5ns	19.2ns
F _{RC}	Write data rate	1 / T _{RC2}	6.5Mbytes/s	8.7Mbytes/s	13Mbytes/s

Table 40 Read access timing

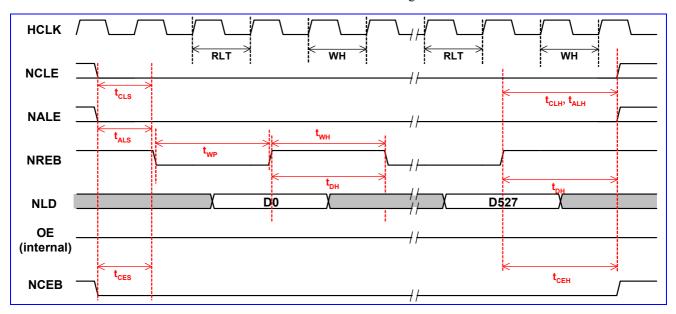


Figure 63 Serial read cycle (1 wait state, 1 hold time extension)

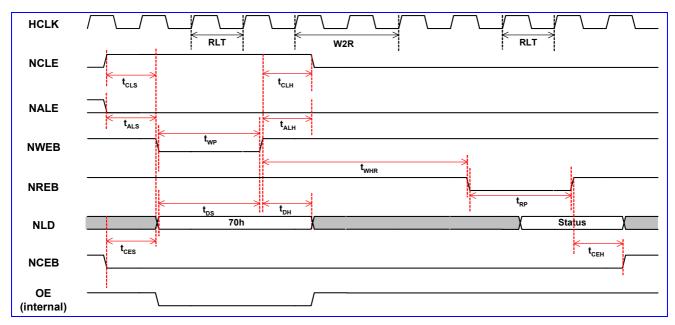


Figure 64 Status read cycle (1 wait state)

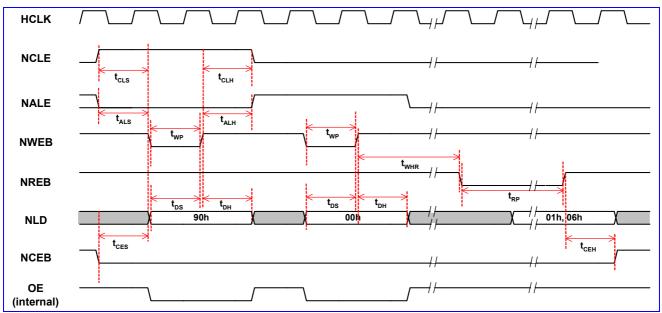


Figure 65 ID and manufacturer read (0 wait state)

6.4 USB Device Controller

6.4.1 General Description

This chip provides a USB function interface that is in compliance with Universal Serial Bus Specification Rev 1.1. The USB device controller supports only full-speed (12Mbps) operation. The cellular phone can make use of this widely available USB interfaces to transmit/receive data with USB hosts, typically PC/laptop.

There provides 5 endpoints in the USB device controller besides the mandatory control endpoint, where among them, 3 endpoints are for IN transactions and 2 endpoints are for OUT transactions. Word, half-word, and byte access are allowed for loading and unloading the FIFO. 4 DMA channels are equipped with the controller to accelerate the data transfer. The features of the endpoints are as follows:

- 1. Endpoint 0: The control endpoint feature 16 bytes FIFO and accommodates maximum packet size of up to 16 bytes. DMA transfer is not supported.
- 2. IN endpoint 1: It features 64 bytes FIFO and accommodates maximum packet size of up to 64 bytes. DMA transfer is supported.
- 3. IN endpoint 2: It features 64 bytes FIFO and accommodates maximum packet size of up to 64 bytes. DMA transfer is supported.
- 4. IN endpoint 3: It features 16-byte FIFO and accommodates maximum packet size of 16 bytes. DMA transfer is not supported.
- 5. OUT endpoint 1: It features 64 bytes FIFO and accommodates maximum packet size of 64 bytes. DMA transfer is supported.
- 6. OUT endpoint 2: It features 64 bytes FIFO and accommodates maximum packet size of 64 bytes. DMA transfer is supported.

For each endpoint except the endpoint 0, if the packet size is small than half the size of the FIFO, at most 2 packets can be buffered.

This unit is highly software configurable. All endpoints except the control endpoint can be configured to be a bulk, interrupt or isochronous endpoints. Composite device is also supported. The IN endpoint 1 and the OUT endpoint 1 shares the same endpoint number but they can be use separately. So is the situation as the IN endpoint 2 and the OUT endpoint 2.

The USB device uses cable-powered feature for the transceiver but only drains little current. An external resistor (nominally 1.5Kohm) is required to be placed across Vbus and D+ signal. Two additional external serial resistors might be needed to place on the output of D+ and D- signals to make the output impedance equivalent to 28~44Ohm.

6.4.2 Register Definitions

7000000h USB function address register

USB_FADDR

Bit	7	6	5	4	3	2	1	0		
Name	UPD		FADDR							
Type	RO		RW							
Reset	0			•	0					

This is an 8-bit register that should be written with the function's 7-bit address (received through a SET_ADDRESS description). It is then used for decoding the function address in subsequent token packets.

UPD Set when FADDR is written. It's cleared when the new address takes effect (at the end of the current transfer). **FADDR** The function address of the device.

7000001h USB power control register

USB POWER

Bit	7	6	5	4	3	2	1	0
Name	ISO_UP			SWRSTENA B	RESET	RESUME	SUSPMODE	SUSPENAB
Type	R/W			R/W	RO	R/W	RO	R/W
Reset	0			0	0	0	0	0

ISO_UP When set by the MCU, the core will wait for an SOF token from the time INPKTRDY is set before sending the packet.

SWRSTENAB Set by the MCU to enable the mode in which the device can only be reset by the software after detecting reset signals on the bus. In case the software is delayed by other high-priority process and can't make it to read the command from the buffer before the hardware reset the device after detecting the reset signal on the bus, the command will be lost. That's why the software-reset mode is effective. When the flag is enabled, the hardware state machine can't reset by itself, but rather can be reset by the software. In that sense, the software and the hardware can keep synchronous on detecting the reset signal.

RESET The read-only bit is set when **Reset** signaling is present on the bus.

RESUME Set by the MCU to generate **Resume** signaling when the function is in suspend mode. The MCU should clear this bit after 10 ms (a maximum of 15 ms) to end Resume signaling.

SUSPMODE Set by the USB core when **Suspend** mode is entered. Cleared when the CPU reads the interrupt register, or sets the Resume bit of this register.

SUSPENAB Set by the MCU to enable device into **Suspend** mode when Suspend signaling is received on the bus.

70000002h USB IN endpoints interrupt register

USB INTRIN

Bit	7	6	5	4	3	2	1	0
Name					EP3	EP2	EP1	EP0
Type					RC	RC	RC	RC
Reset					0	0	0	0

This is a read-only register that indicates which of the interrupts for IN endpoints 0 to 3 are currently active. All active interrupts will be cleared when this register is read.

EP3 IN endpoint #3 interrupt.

EP2 IN endpoint #2 interrupt.

EP1 IN endpoint #1 interrupt.

EP0 IN endpoint #0 interrupt.

7000004h USB OUT endpoints interrupt register

USB_INTROUT

Bit	7	6	5	4	3	2	1	0
Name						EP2	EP1	
Type						RC	RC	
Reset						0	0	

This is a read-only register that indicates which of the interrupts for OUT endpoints 1 and 2 are currently active. All active interrupts will be cleared when this register is read.

EP2 OUT endpoint #2 interrupt.

EP1 OUT endpoint #1 interrupt.

7000006h USB general interrupt register

USB_INTRUSB

Bit	7	6	5	4	3	2	1	0
Name					SOF	RESET	RESUME	SUSP
Type					RC	RC	RC	RC
Reset					0	0	0	0

This is a read-only register that indicates which USB interrupts are currently active. All active interrupts will be cleared when this register is read.

SOF Set at the start of each frame.

RESET Set when **Reset** signaling is detected on the bus.

RESUME Set when Resume signaling is detected on the bus while the USB core is in suspend mode.

SUSP Set when Suspend signaling is detected on the bus.

7000007h USB IN endpoints interrupt enable register

USB INTRINE

Bit	7	6	5	4	3	2	1	0
Name					EP3	EP2	EP1	EP0
Type					R/W	R/W	R/W	R/W
Reset					1	1	1	1

This register provides interrupt enable bits for the interrupts in USB_INTRIN. On reset, the bits corresponding to endpoint 0 and all IN endpoints are set to 1.

EP3 IN endpoint 3 interrupt enable.

EP2 IN endpoint 2 interrupt enable.

EP1 IN endpoint 1 interrupt enable.

EP0 IN endpoint 0 interrupt enable.

7000009h

USB OUT endpoints interrupt enable register

USB_INTROUT

Ē

Bit	7	6	5	4	3	2	1	0
Name						EP2	EP1	
Type						R/W	R/W	
Reset						1	1	

This register provides interrupt enable bits for the interrupts in USB_INTROUT. On reset, the bits corresponding to all OUT endpoints are set to 1.

EP2 OUT endpoint 2 interrupt enable.

EP1 OUT endpoint 1 interrupt enable.

7000000Bh USB general interrupt enable register

USB_INTRUSB

E

Bit	7	6	5	4	3	2	1	0
Name					SOF	RESET	RESUME	SUSP
Type					R/W	R/W	R/W	R/W
Reset					0	1	1	0

This register provides interrupt enable bits for each of the interrupts for USB INTRUSB.

SOF SOF interrupt enable
RESUME Resume interrupt enable
SUSP Suspend interrupt enable

700000Ch USB frame count #1 register

USB FRAME1

Bit	7	6	5	4	3	2	1	0		
Name		NUML								
Type		RO								
Reset		0								

The register holds the lower 8 bits of the last received frame number.

NUML The lower 8 bits of the frame number.

7000000Dh USB frame count #2 register

USB_FRAME2

Bit	7	6	5	4	3	2	1	0
Name							NUMH	
Type							RO	
Reset							0	

The register holds the upper 3 bits of the last received frame number.

NUMH The upper 3 bits of the frame number.

700000Eh USB endpoint register index

USB INDEX

Bit	7	6	5	4	3	2	1	0	
Name					INDEX				
Type					R/W				
Reset					0				

The register determines which endpoint control/status registers are to be accessed at addresses USB+10h to USB+17h. Each IN endpoint and each OUT endpoint have their own set of control/status registers. Only one set of IN control/status and one set of OUT control/status registers appear in the memory map at any one time. Before accessing an endpoint's control/status registers, the endpoint number should be written to the USB_INDEX register to ensure that the correct control/status registers appear in the memory map.

INDEX The index of the endpoint.

700000Fh USB reset control

USB RSTCTRL

Bit	7	6	5	4	3	2	1	0	
Name	SWRST				RSTCNTR				
Type	R/W				R/W				
Reset	0				0				

The register is used to control the reset process when the device detects the reset command issued from the host.

If the flag SWRSTENAB in the register USB_POWER is set to be 1, the software enable mode is enabled, and the device can be reset by writing this flag to be 1.

RSTCNTR The field signifies the duration for the reset operation to take place after detecting reset signal on the bus. It's only enabled when software reset is not enabled. If the value is equal to zero, the duration is 2.5us. Otherwise, the duration is equal to this value multiplied by 341 and then added by 2.5 in unit of us. The range consequently starts from 2.5us to 5122.5 us.

70000011h **USB** control/status register for endpoint 0

USB EP0 CSR

Bit	7	6	5	4	4 3		1	0
Name	SSETUPEND SOUTPKTR		SENDSTALL	SETUPEND	DATAEND	SENTSTALL	INPKTRDY	OUTPKTRD Y
Type	R/WS	R/WS	R/WS	RO	R/WS	R/WC	R/WS	RO
Reset	0	0	0	0	0	0	0	0

The register is used for all control/status of endpoint 0. The register is active when USB_INDEX register is set to 0.

SSETUPEND

The MCU writes a 1 to this bit to clear the SETUPEND bit. It's cleared automatically. Only active when a transaction has been started.

SOUTPKTRDY

The MCU writes a 1 to this bit to clear the OUTPKTRDY bit. It's cleared automatically. Only active when an OUT transaction has been started.

SENDSTALL

The MCU writes a 1 to this bit to terminate the current transaction. The STALL handshake will be transmitted and then this bit will be cleared automatically.

SETUPEND

This bit will be set when a control transaction ends before the DATAEND bit has been set. An interrupt will be generated and FIFO flushed at this time. The bit is cleared by the MCU writing a 1 to the **SSETUPEND** bit.

DATAEND

The MCU sets this bit:

- 1. When setting INPKTRDY for the last data packet.
- 2. When clearing OUTPKTRDY after unloading the last data packet.
- 3. When setting INPKTRDY for a zero length data packet.

It's cleared automatically

SENTSTALL writing a 0. This bit is set when a STALL handshake is transmitted. The MCU should clear this bit by

INPKTRDY

The MCU sets this bit after loading a data packet into the FIFO. It is cleared automatically when the data packet has been transmitted. An interrupt is generated when this bit is set.

OUTPKTRDY

This bit is set when a data packet has been received. An interrupt is generated when this bit is set. The MCU clears this bit by setting the SOUTPKTRDY bit.

70000016h **USB** byte count register

USB EP0 COU

NT

Bit	7	6 5		4	4 3		1	0					
Name			COUNT										
Type			RO										
Reset			0										

The register indicates the number of received data bytes in the endpoint 0. The value returned is valid while OUTPKTRDY bit of USB_EP0_CSR register is set. The register is active when USB_INDEX register is set to 0.

COUNTThe number of received data bytes in the endpoint 0.

70000010h

Name

USB maximum packet size register for IN endpoint

USB EP INMA

7	6	5	4	3	2	1	0
			MA	XP			

Туре	R/W
Reset	0

The register holds the maximum packet size for transactions through the currently selected IN endpoint – in units of 8 bytes. In setting the value, the programmer should note the constraints placed by the USB Specification on packet size for bulk interrupt, and isochronous transactions in full-speed operations. There is an INMAXP register for each IN endpoint except endpoint 0. The registers are active when USB INDEX register is set to 1, 2, and 3, respectively.

The value written to this register should match the *wMaxPacketSize* field of the standard endpoint descriptor for the associated endpoint. A mismatch could cause unexpected results. If a value greater than the configured IN FIFO size for the endpoint is written to the register, the value will be automatically changed to the IN FIFO size. If the value written to the register is less than, or equal to, half the IN FIFO size, two IN packets can be buffered. The configured IN FIFO size for the endpoint 1, 2, and 3, are 64 bytes, 64 bytes, and 16 bytes, respectively.

The register is reset to 0. If the register is changed after packets have been sent from the endpoint, the endpoint IN FIFO should be completely flushed after writing the new value to the register.

MAXP The maximum packet size in units of 8 bytes.

70000011h USB control/status register #1 for IN endpoint 1~3

USB_EP_INCS

Bit	7	6	5	4	3	3 2		0
Name		CLRDATAT OG	SENTSTALL	SENDSTALL	FLUSHFIFO	UNDERRUN	FIFONOTEM PTY	INPKTRDY
Type		WO	R/WC	R/W	WO	R/WC	RO	R/WS
Reset	0		0	0	0	0	0	0

The register provides control and status bits for IN transactions through the currently selected endpoint. There is an INCSR1 register for each IN endpoint except endpoint 0. The registers are active when USB_INDEX register is set to 1, 2, and 3, respectively.

CLRDATATOG

The MCU writes a 1 to this bit to reset the endpoint IN data toggle to 0.

SENTSTALL

The bit is set when a STALL handshake is transmitted. The FIFO is flushed and the

INPKTRDY bit is cleared. The MCU should clear this bit by writing a 0 to this bit.

SENDSTALL

The MCU writes a 1 to this bit to issue a STALL handshake to an IN token. The MCU clears this bit to terminate the stall condition.

FLUSHFIFO

The MCU writes a 1 to this bit to flush the next packet to be transmitted from the endpoint IN FIFO. The FIFO pointer is reset and the INPKTRDY bit is cleared. If the FIFO contains two packets, FLUSHFIFO will need to be set twice to completely clear the FIFO.

UNDERRUN

In isochronous mode, this bit is set when a zero length data packet is sent after receiving an IN token with the INPKTRDY bit not set. In Bulk/Interrupt mode, this bit is set when a NAK is returned in response to an IN token. The MCU should clear this bit by writing a 0 to this bit.

FIFONOTEMPTY

This bit is set when there is at least 1 packet in the IN FIFO.

INPKTRDY

The MCU sets this bit after loading a data packet into the FIFO. Only active when an IN transaction has been started. It is cleared automatically when a data packet has been transmitted. An interrupt is generated (if enabled) when the bit is cleared.

70000012h USB control/status register #2 for IN endpoint 1~3

USB_EP_INCS R2

Bit	7	6	5	4	3	2	1	0
Name	AUTOSET	ISO	MODE	DMAENAB	RFCDATAT OG			
Type	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0			

The register provides further control bits for IN transactions through the currently selected endpoint. There is an INCSR2 register for each IN endpoint except endpoint 0. The registers are active when USB_INDEX register is set to 1, 2, and 3, respectively.

AUTOSET

If the MCU sets the bit, INPKTRDY will be automatically set when data of the maximum packet size (value in INMAXP) is loaded into the IN FIFO. If a packet of less than the maximum packet size is loaded, then INPKTRDY will have to be set manually. When 2 packets are in the IN FIFO then INPKTRDY will also be automatically set when the first packet has been sent, if the second packet is the maximum packet size.

ISO

The MCU sets this bit to enable the IN endpoint for isochronous transfer, and clears it to enable the IN endpoint for bulk/interrupt transfers.

MODE

The MCU sets this bit to enable the endpoint direction as IN, and clears it to enable the endpoint direction as OUT. It's valid only where the same endpoint FIFO is used for both IN and OUT transaction.

DMAENAB FRCDATATOG The MCU sets this bit to enable the DMA request for the IN endpoint.

The MCU sets this bit to force the endpoint's IN data toggle to switch after each data packet is sent regardless of whether an ACK was received. This can be used by interrupt IN endpoints which are used to communicate rate feedback for isochronous endpoints.

70000013h

USB maximum packet size register for OUT endpoint USB_EP_OUTM 1~2

Bit	7	6	5	4	3	2	1	0					
Name	MAXP												
Type		RW											
Reset		0											

This register holds the maximum packet size for transactions through the currently selected OUT endpoint – in units of 8 bytes. In setting this value, the programmer should note the constraints placed by the USB specification on packet sizes for bulk, interrupt, and isochronous transactions in full speed operations. There is an OUTMAXP register for each OUT endpoint except endpoint 0. The registers are active when USB_INDEX register is set to 1 and 2, respectively.

The value written to this register should match the *wMaxPacketSize* field of the standard endpoint descriptor for the associated endpoint. A mismatch could cause unexpected results. The total amount of data represented by the value written to this register must not exceed the FIFO size for the OUT endpoint, and should not exceed half the FIFO size if double buffering is required. If a value greater than the configured OUT FIFO size for the endpoint is written to the register, the value will be automatically changed to the OUT FIFO size. If the value written to the register is less than, or equal to, half the OUT FIFO size, two OUT packets can be buffered. The configured IN FIFO size for the endpoint 1 and 2 are both 64 bytes.

MAXP The maximum packet size in units of 8 bytes.

70000014h USB control/status register #1 for OUT endpoint 1~2 USB_EP_OUTC

Bit	7	6	5	4	3 2		1	0
Name	CLRDATAT OG	SENTSTALL	SENDSTALL	FLUSHFIFO	DATAERRO R	OVERRUN	FIFOFULL	OUTPKTRD Y
Type	WO	R/WC	R/W	WO	RO	R/WC	RO	R/WC
Reset	0	0	0	0	0	0	0	0

The register provides control status bits for OUT transactions through the currently selected endpoint. The registers are active when USB_INDEX register is set to 1 and 2, respectively.

CLRDATATOG

The MCU writes a 1 to this bit to reset the endpoint data toggle to 0.

SENTSTALL The bit is set when a STALL handshake is transmitted. The MCU should clear this bit by writing a 0.

SENDSTALL The MCU writes a 1 to this bit to issue a STALL handshake. The MCU clears this bit to

terminate the stall condition. This bit has no effect if the OUT endpoint is in isochronous mode.

FLUSHFIFO The MCU writes a 1 to this bit to flush the next packet to be read from the endpoint OUT FIFO.

If the FIFO contains two packets, FLUSHFIFO will need to be set twice to completely clear the

FIFO.

DATAERROR The bit is set when OUTPKTRDY is set if the data packet has a CRC or bit-stuff error. It is

cleared when OUTPKTRDY is cleared. This bit is only valid in isochronous mode.

OVERRUN The bit is set if an OUT packet cannot be loaded into the OUT FIFO. The MCU should clear the bit

by writing a zero. This bit is only valid in isochronous mode.

FIFOFULL This bit is set when no more packets can be loaded into the OUT FIFO.

OUTPKTRDY The bit is set when a data packet has been received. The MCU should clear (write a 0 to) the bit

when the packet has been unloaded from the OUT FIFO. An interrupt is generated when the bit is set.

70000015h USB control/status register #2 for OUT endpoint 1~2 USB_EP_OUTC SR2

Bit	7	6	5	4	3	2	1	0
Name	AUTOCLEA R	ISO	DMAENAB	DMAMODE				
Type	R/W	R/W	R/W	R/W				
Reset		0	0	0				

The register provides further control bits for OUT transactions through the currently selected endpoint. The registers are active when USB_INDEX register is set to 1 and 2, respectively.

AUTOCLEAR If the MCU sets this bit then the OUTPKTRDY bit will be automatically cleared when a packet

of OUTMAXP bytes has been unloaded from the OUT FIFO. When packets of less then the maximum packet size are unloaded, OUTPKTRDY will have to be cleared manually.

The MCU sets this bit to enable the OUT endpoint for isochronous transfers, and clears it to enable

the OUT endpoint for bulk/interrupt transfers.

DMAENAB The MCU sets this bit to enable the DMA request for the OUT endpoint.

DMAMODE Two modes of DMA operation are supported: DMA mode 0 in which a DMA request is generated for

all received packets, together with an interrupt (if enabled); and DMA mode 1 in which a DMA request (but no interrupt) is generated for OUT packets of size OUTMAXP bytes and an interrupt (but no DMA request) is generated for OUT packets of any other size. The MCU sets the bit to select

DMA mode 1 and clears this bit to select DMA mode 0.

70000016h USB OUT endpoint byte counter register LSB part for USB_EP_COUN endpoint 1~2

Bit	7	6	5	4	3	2	1	0				
Name	NUML											
Type	RO											
Reset	0											

The register holds the lower 8 bits of the number of received data bytes in the packet in the FIFO associated with the currently selected OUT endpoint. The value returned is valid while OUTPKTRDY in the register USB_OUTCSR1 is set. The registers are active when USB_INDEX register is set to 1 and 2, respectively.

NUML The lower 8 bits of the number of received data bytes for the OUT endpoint.

70000017h

USB OUT endpoint byte counter register MSB part USB_EP_COUN for endpoint 1~2 T2

Bit	7	6	5	4	3	2	1	0			
Name						NUMH					
Type						RO					
Reset						0					

The register holds the upper 3 bits of the number of received data bytes in the packet in the FIFO associated with the currently selected OUT endpoint. The value returned is valid while OUTPKTRDY in the register USB_EP_OUTCSR1 is set. The registers are active when USB_INDEX register is set to 1 and 2, respectively.

NUMH The upper 8 bits of the number of received data bytes for the OUT endpoint.

70000020h USB endpoint 0 FIFO access register

USB EP0 FIFO

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				DE	33							DI	32			
Type		R/W										R/	W			
Bit	15	15 14 13 12 11 10 9 8							7	6	5	4	3	2	1	0
Name		DB1										DI	30			
Type		R/W										R/	W			

The register provides MCU access to the FIFO for the endpoint 0. Writing to this register loads data into the FIFO for the endpoint 0. Reading from this register unloads data from the FIFO for the endpoint 0.

The register provides word, half-word, and byte mode access. If word or half-word accesses are performed, the less significant byte corresponds to the prior byte to load in or unload from the FIFO.

DB0 The first byte to be loaded into or unloaded from the FIFO.

DB1 The second byte to be loaded into or unloaded from the FIFO.

DB2 The third byte to be loaded into or unloaded from the FIFO.

DB3 The forth byte to be loaded into or unloaded from the FIFO.

70000024h USB endpoint 1 FIFO access register

USB_EP1_FIFO

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				DI	33							DI	B2			
Type				R/	W							R/	W			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				DI	31							DI	B0			
Type				R/	W							R/	W			

The register provides MCU access to the IN FIFO and the OUT FIFO for the endpoint 1. Writing to the register loads data into the IN FIFO for the endpoint 1. Reading from the register unloads data from the OUT FIFO for the endpoint 1.

The register provides word, half-word, and byte mode access. If word or half-word accesses are performed, the less significant byte corresponds to the prior byte to load in the IN FIFO or unload from the OUT FIFO.

DBO The first byte to be loaded in the IN FIFO or unloaded from the OUT FIFO.

DB1 The second byte to be loaded in the IN FIFO or unloaded from the OUT FIFO.

DB2 The third byte to be loaded in the IN FIFO or unloaded from the OUT FIFO.

DB3 The forth byte to be loaded in the IN FIFO or unloaded from the OUT FIFO.

70000028h USB endpoint 2 FIFO access register

USB EP2 FIFO

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				DI	33							DI	32			
Type				R/	W							R/	W			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Name	DB1	DB0
Type	R/W	R/W

The register provides MCU access to the IN FIFO and the OUT FIFO for the endpoint 2. Writing to the register loads data into the IN FIFO for the endpoint 2. Reading from the register unloads data from the OUT FIFO for the endpoint 2.

The register provides word, half-word, and byte mode access. If word or half-word accesses are performed, the less significant byte corresponds to the prior byte to load in the IN FIFO or unload from the OUT FIFO.

- **DB0** The first byte to be loaded into the IN FIFO or unloaded from the OUT FIFO.
- **DB1** The second byte to be loaded into the IN FIFO or unloaded from the OUT FIFO.
- **DB2** The third byte to be loaded into the IN FIFO or unloaded from the OUT FIFO.
- **DB3** The forth byte to be loaded into the IN FIFO or unloaded from the OUT FIFO.

7000002Ch USB endpoint 3 FIFO access register

USB_EP3_FIFO

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				DE	33							DI	32			
Type				R/	W							R/	W			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				DE	31							DI	30			
Type				R/	W							R/	W			

The register provides MCU access to the IN FIFO for the endpoint 3. Writing to the register loads data into the IN FIFO for the endpoint 3.

The register provides word, half-word, and byte mode access. If word or half-word accesses are performed, the less significant byte corresponds to the prior byte to load in the IN FIFO.

- **DB0** The first byte to be loaded into the IN FIFO.
- **DB1** The second byte to be loaded into the IN FIFO.
- **DB2** The third byte to be loaded into the IN FIFO.
- **DB3** The forth byte to be loaded into the IN FIFO.

6.5 Memory Stick and SD Memory Card Controller

6.5.1 Introduction

The controller fully supports the Memory Stick bus protocol as defined in Format Specification version 2.0 of Memory Stick Standard (Memory Stick PRO) and the SD Memory Card bus protocol as defined in SD Memory Card Specification Part 1 Physical Layer Specification version 1.0 as well as the MultiMediaCard (MMC) bus protocol as defined in MMC system specification version 2.2. Since SD Memory Card bus protocol is backward compatible to MMC bus protocol, the controller is capable of working well as the host on MMC bus under control of proper firmware. Furthermore, the controller also support SDIO card specification version 1.0 partially. However, the controller can only be configured as either the host of Memory Stick or the host of SD/MMC Memory Card at one time. Hereafter, the controller is also abbreviated as MS/SD controller. The following are the main features of the controller.

- Interface with MCU by APB bus
- 16/32-bit access on APB bus
- 16/32-bit access for control registers
- 32-bit access for FIFO
- Shared pins for Memory Stick and SD/MMC Memory Card
- Built-in 32 bytes FIFO buffers for transmit and receive, FIFO is shared for transmit and receive

- Built-in CRC circuit
- CRC generation can be disabled
- DMA supported
- Interrupt capabilities
- Automatic command execution capability when an interrupt from Memory Stick
- Data rate up to 26 Mbps in serial mode, 26x4 Mbps in parallel model, the module is targeted at 26 MHz operating clock
- Serial clock rate on MS/SD/MMC bus is programmable
- Card detection capabilities
- Controllability of power for memory card
- Not support SPI mode for MS/SD/MMC Memory Card
- Not support multiple SD Memory Cards

6.5.2 Overview

6.5.2.1 Pin Assignment

Since the controller can only be configured as either the host of Memory Stick or the host of SD/MMC Memory Card at one time, pins for Memory Stick and SD/MMC Memory Card are shared in order to save pin counts. The following lists pins required for Memory Stick and SD/MMC Memory Card. **Table 41** shows how they are shared. In **Table 41**, all I/O pads have embedded both pull up and pull down resistor because they are shared by both the Memory Stick and SD/MMC Memory Card. Pins 2,4,5,8 are only useful for SD/MMC Memory Card. Pull down resistor for these pins can be used for power saving. All embedded pull-up and pull-down resistors can be disabled by programming the corresponding control registers if optimal pull-up or pull-down resistors are required on the system board. The pin VDDPD is used for power saving. Power for Memory Stick or SD/MMC Memory Card can be shut down by programming the corresponding control register. The pin WP (Write Protection) is only valid when the controller is configured for SD/MMC Memory Card. It is used to detect the status of Write Protection Switch on SD/MMC Memory Card.

No.	Name	Type	MMC	SD	MS	MSPRO	Description
1	SD_CLK	О	CLK	CLK	SCLK	SCLK	Clock
2	SD_DAT3	I/O/PP		CD/DAT3		DAT3	Data Line [Bit 3]
3	SD_DAT0	I/O/PP	DAT0	DAT0	SDIO	DAT0	Data Line [Bit 0]
4	SD_DAT1	I/O/PP		DAT1		DAT1	Data Line [Bit 1]
5	SD_DAT2	I/O/PP		DAT2		DAT2	Data Line [Bit 2]
6	SD_CMD	I/O/PP	CMD	CMD	BS	BS	Command Or Bus State
7	SD_PWRON	O					VDD ON/OFF
8	SD_WP	I					Write Protection Switch in SD
9	SD_INS	I	VSS2	VSS2	INS	INS	Card Detection

Table 41 Sharing of pins for Memory Stick and SD/MMC Memory Card Controller

6.5.2.2 Card Detection

For Memory Stick, the host or connector should provide a pull up resistor on the signal INS. Therefore, the signal INS will be logic high if no Memory Stick is on line. The scenario of card detection for Memory Stick is shown in **Figure** 66. Before Memory Stick is inserted or powered on, on host side SW1 shall be closed and SW2 shall be opened for card detection. It is the default setting when the controller is powered on. Upon insertion of Memory Stick, the signal

INS will have a transition from high to low. Hereafter, if Memory Stick is removed then the signal INS will return to logic high. If card insertion is intended to not be supported, SW1 shall be opened and SW2 closed always.

For SD/MMC Memory Card, detection of card insertion/removal by hardware is also supported. Because a pull down resistor with about 470 K Ω resistance which is impractical to embed in an I/O pad is needed on the signal CD/DAT3, and it has to be capable of being connected or disconnected dynamically onto the signal CD during initialization period, an additional I/O pad is needed to switch on/off the pull down resistor on the system board. The scenario of card detection for SD/MMC Memory Card is shown in **Figure 67**. Before SD/MMC Memory Card is inserted or powered on, SW1 and SW2 shall be opened for card detection on the host side. Meanwhile, pull down resistor R_{CD} on system board shall attach onto the signal CD/DAT3 by the output signal RCDEN. In addition, SW3 on the card is default to be closed. Upon insertion of SD/MMC Memory Card, the signal CD/DAT3 will have a transition from low to high. If SD/MMC Memory Card is removed then the signal CD/DAT3 will return to logic low. After the card identification process, pull down resistor R_{CD} on system board shall disconnect with the signal CD/DAT3 and SW3 on the card shall be opened for normal operation.

Since the scheme above needs a mechanical switch such as a relay on system board, it is not ideal enough. Thus, a dedicated pin "INS" is used to perform card insertion and removal for SD/MMC. The pin "INS" will connect to the pin "VSS2" of a SD/MMC connector. Then the scheme of card detection is the same as that for MS. It is shown in **Figure 66**.

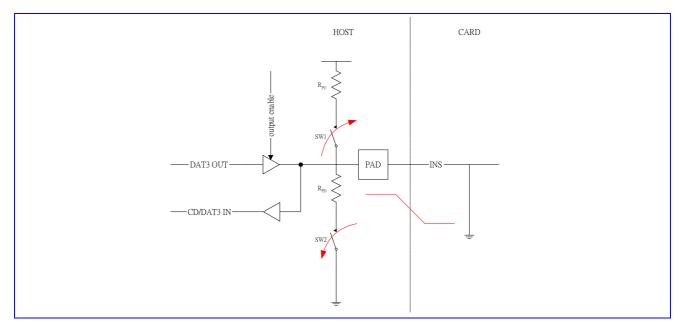


Figure 66 Card detection for Memory Stick

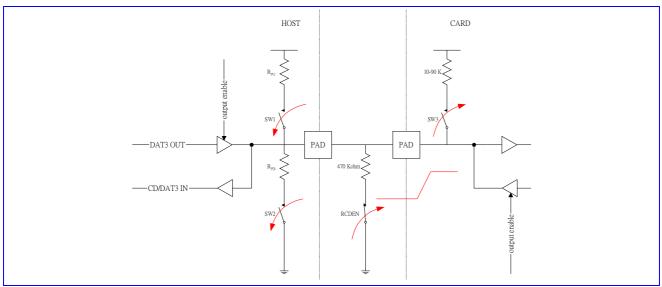


Figure 67 Card detection for SD/MMC Memory Card

6.5.3 Register Definitions

REGISTER ADDRESS	REGISTER NAME	SYNONYM
MSDC + 0000h	MS/SD Memory Card Controller Configuration Register	MSDC_CFG
MSDC + 0004h	MS/SD Memory Card Controller Status Register	MSDC_STA
MSDC + 0008h	MS/SD Memory Card Controller Interrupt Register	MSDC_INT
MSDC + 000Ch	MS/SD Memory Card Controller Data Register	MSDC_DAT
MSDC + 00010h	MS/SD Memory Card Pin Status Register	MSDC_PS
MSDC + 00014h	MS/SD Memory Card Controller IO Control Register	MSDC_IOCON
MSDC + 0020h	SD Memory Card Controller Configuration Register	SDC_CFG
MSDC + 0024h	SD Memory Card Controller Command Register	SDC_CMD
MSDC + 0028h	SD Memory Card Controller Argument Register	SDC_ARG
MSDC + 002Ch	SD Memory Card Controller Status Register	SDC_STA
MSDC + 0030h	SD Memory Card Controller Response Register 0	SDC_RESP0
MSDC + 0034h	SD Memory Card Controller Response Register 1	SDC_RESP1
MSDC + 0038h	SD Memory Card Controller Response Register 2	SDC_RESP2
MSDC + 003Ch	SD Memory Card Controller Response Register 3	SDC_RESP3
MSDC + 0040h	SD Memory Card Controller Command Status Register	SDC_CMDSTA
MSDC + 0044h	SD Memory Card Controller Data Status Register	SDC_DATSTA
MSDC + 0048h	SD Memory Card Status Register	SDC_CSTA
MSDC + 004Ch	SD Memory Card IRQ Mask Register 0	SDC_IRQMASK0
MSDC + 0050h	SD Memory Card IRQ Mask Register 1	SDC_IRQMASK1
MSDC + 0054h	SDIO Configuration Register	SDIO_CFG
MSDC + 0058h	SDIO Status Register	SDIO_STA
MSDC + 0060h	Memory Stick Controller Configuration Register	MSC_CFG
MSDC + 0064h	Memory Stick Controller Command Register	MSC_CMD
MSDC + 0068h	Memory Stick Controller Auto Command Register	MSC_ACMD
MSDC + 006Ch	Memory Stick Controller Status Register	MSC_STA

Table 42 MS/SD Controller Register Map

6.5.3.1 Global Register Definitions

MSDC+0000h MS/SD Memory Card Controller Configuration Register MSDC_CFG

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		FIFO	THD		PRO	FG2	PRC	FG1	PRC	FG0	VDDP D	RCDE N	DIRQ EN	PINE N	DMAE N	INTE N
Type		R/	W		R/	W	R/	W	R/	W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0001			0	1	0	1	1	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				SCI	_KF				SCLK ON	RED	STDB Y	CLKS RC	RST	NOCR C		MSD C
Type				R/	W				R/W	R/W	R/W	R/W	W	R/W		R/W
Reset				0000	0000			•	0	0	1	0	0	0		0

The register is for general configuration of the MS/SD controller. Note that MSDC_CFG[31:16] can be accessed by 16-bit APB bus access.

MSDC The register bit is used to configure the controller as the host of Memory Stick or as the host of SD/MMC Memory card. The default value is to configure the controller as the host of Memory Stick.

- O Configure the controller as the host of Memory Stick
- 1 Configure the controller as the host of SD/MMC Memory card

NOCRC CRC Disable. A '1' indicates that data transfer without CRC is desired. For write data block, data will be transmitted without CRC. For read data block, CRC will not be checked. It is for testing purpose.

- **0** Data transfer with CRC is desired.
- 1 Data transfer without CRC is desired.

RST Software Reset. Writing a '1' to the register bit will cause internal synchronous reset of MS/SD controller, but does not reset register settings.

- Otherwise
- 1 Reset MS/SD controller

CLKSRC The register bit specifies which clock is used as source clock of memory card. If MUC clock is used, the fastest clock rate for memory card is 52/2=26MHz. If USB clock is used, the fastest clock rate for memory card is 48/2=24MHz.

- Use MCU clock as source clock of memory card.
- 1 Use USB clock as source clock of memory card.

STDBY Standby Mode. If the module is powered down, operating clock to the module will be stopped. At the same time, clock to card detection circuitry will also be stopped. If detection of memory card insertion and removal is desired, write '1' to the register bit. If interrupt for detection of memory card insertion and removal is enabled, interrupt will take place whenever memory is inserted or removed.

- **0** Standby mode is disabled.
- 1 Standby mode is enabled.

RED Rise Edge Data. The register bit is used to determine that serial data input is latched at the falling edge or the rising edge of serial clock. The default setting is at the rising edge. If serial data has worse timing, set the register bit to '1'. When memory card has worse timing on return read data, set the register bit to '1'.

- O Serial data input is latched at the rising edge of serial clock.
- 1 Serial data input is latched at the falling edge of serial clock.

SCLKON Serial Clock Always On. It is for debugging purpose.

- Not to have serial clock always on.
- 1 To have serial clock always on.

SCLKF The register field controls clock frequency of serial clock on MS/SD bus. Denote clock frequency of MS/SD bus serial clock as f_{slave} and clock frequency of the MS/SD controller as f_{host} which is 104 or 52 MHz. Then the value of the register field is as follows. Note that the allowable maximum frequency of f_{slave} is 26MHz.

```
\begin{array}{ll} \textbf{00000000b} & f_{slave} = & (1/2) * f_{host} \\ \textbf{00000001b} & f_{slave} = & (1/(4*1)) * f_{host} \\ \textbf{000000010b} & f_{slave} = & (1/(4*2)) * f_{host} \\ \textbf{000000011b} & f_{slave} = & (1/(4*3)) * f_{host} \\ \dots & \\ \textbf{00010000b} & f_{slave} = & (1/(4*16)) * f_{host} \\ \dots & \\ \textbf{1111111b} & f_{slave} = & (1/(4*255)) * f_{host} \\ \end{array}
```

INTEN Interrupt Enable. Note that if interrupt capability is disabled then application software must poll the status of the register MSDC_STA to check for any interrupt request.

- Interrupt induced by various conditions is disabled, no matter the controller is configured as the host of either SD/MMC Memory Card or Memory Stick.
- 1 Interrupt induced by various conditions is enabled, no matter the controller is configured as the host of either SD/MMC Memory Card or Memory Stick.

DMAEN

DMA Enable. Note that if DMA capability is disabled then application software must poll the status of the register MSDC STA for checking any data transfer request. If DMA is desired, the register bit must be set before command register is written.

- DMA request induced by various conditions is disabled, no matter the controller is configured as the host of either SD/MMC Memory Card or Memory Stick.
- DMA request induced by various conditions is enabled, no matter the controller is configured as the host of either SD/MMC Memory Card or Memory Stick.

PINEN Pin Interrupt Enable. The register bit is used to control if the pin for card detection is used as an interrupt source.

- The pin for card detection is not used as an interrupt source.
- The pin for card detection is used as an interrupt source.

DIRQEN Data Request Interrupt Enable. The register bit is used to control if data request is used as an interrupt source.

- Data request is not used as an interrupt source. 0
- Data request is used as an interrupt source.

RCDENThe register bit controls the output pin RCDEN that is used for card identification process when the controller is for SD/MMC Memory Card. Its output will control the pull down resistor on the system board to connect or disconnect with the signal CD/DAT3.

- The output pin RCDEN will output logic low.
- The output pin RCDEN will output logic high.

VDDPD The register bit controls the output pin VDDPD that is used for power saving. The output pin VDDPD will control power for memory card.

- The output pin VDDPD will output logic low. The power for memory card will be turned off.
- The output pin VDDPD will output logic high. The power for memory card will be turned on.

PRCFG0 Pull Up/Down Register Configuration for the pin WP. The default value is 10.

- **00** Pull up resistor and pull down resistor in the I/O pad of the pin WP are all disabled.
- **01** Pull down resistor in the I/O pad of the pin WP is enabled.
- 10 Pull up resistor in the I/O pad of the pin WP is enabled.
- 11 Use keeper of IO pad.

PRCFG1 Pull Up/Down Register Configuration for the pin CMD/BS. The default value is 0b01.

- **00** Pull up resistor and pull down resistor in the I/O pad of the pin CMD/BS are all disabled.
- **01** Pull down resistor in the I/O pad of the pin CMD/BS is enabled.
- 10 Pull up resistor in the I/O pad of the pin CMD/BS is enabled.
- 11 Use keeper of IO pad.

Pull Up/Down Register Configuration for the pins DAT0, DAT1, DAT2, DAT3. The default value is 0b01. PRCFG2

- **00** Pull up resistor and pull down resistor in the I/O pads o the pins DAT0, DAT1, DAT2, DAT3. are all
- **01** Pull down resistor in the I/O pads of the pins DAT0, DAT1, DAT2, DAT3 and WP. is enabled.
- 10 Pull up resistor in the I/O pads of the pins DAT0, DAT1, DAT2, DAT3. is enabled.
- 11 Use keeper of IO pad.

FIFO THD FIFO Threshold. The register field determines when to issue a DMA request. For write transactions, DMA requests will be asserted if the number of free entries in FIFO are larger than or equal to the value in the register field. For read transactions, DMA requests will be asserted if the number of valid entries in FIFO are larger than or equal to the value in the register field. The register field must be set according to the setting of

data transfer count in DMA burst mode. If single mode for DMA transfer is used, the register field shall be set to 0b0001.

0000 Invalid.

0001 Threshold value is 1.

0010 Threshold value is 2.

...

1000 Threshold value is 8.

others Invalid

MSDC+0004h MS/SD Memory Card Controller Status Register

MSDC_STA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	BUSY	FIFOC LR								FIFO	CNT		INT	DRQ	BE	BF
Type	R	W								R	0		RO	RO	RO	RO
Reset		-								00	00		0	0	0	0

The register contains the status of FIFO, interrupts and data requests.

BF The register bit indicates if FIFO in MS/SD controller is full.

- FIFO in MS/SD controller is not full.
- 1 FIFO in MS/SD controller is full.

BE The register bit indicates if FIFO in MS/SD controller is empty.

- FIFO in MS/SD controller is not empty.
- 1 FIFO in MS/SD controller is empty.

The register bit indicates if any data transfer is required. While any data transfer is required, the register bit still will be active even if the register bit DIRQEN in the register MSDC_CFG is disabled. Data transfer can be achieved by DMA channel alleviating MCU loading, or by polling the register bit to check if any data transfer is requested. While the register bit DIRQEN in the register MSDC_CFG is disabled, the second method is used.

- No DMA request exists.
- 1 DMA request exists.

INT The register bit indicates if any interrupt exists. While any interrupt exists, the register bit still will be active even if the register bit INTEN in the register MSDC_CFG is disabled. MS/SD controller can interrupt MCU by issuing interrupt request to Interrupt Controller, or software/application polls the register endlessly to check if any interrupt request exists in MS/SD controller. While the register bit INTEN in the register MSDC_CFG is disabled, the second method is used. For read commands, it is possible that timeout error takes place. Software can read the status register to check if timeout error takes place without OS time tick support or data request is asserted. Note that the register bit will be cleared when reading the register MSDC_INT.

- No interrupt request exists.
- 1 Interrupt request exists.

FIFOCNT FIFO Count. The register field shows how many valid entries are in FIFO.

0000 There is 0 valid entry in FIFO.

0001 There is 1 valid entry in FIFO.

0010 There are 2 valid entries in FIFO.

...

1000 There are 8 valid entries in FIFO.

others Invalid

FIFOCLR Clear FIFO. Writing '1' to the register bit will cause the content of FIFO clear and reset the status of FIFO controller.

- No effect on FIFO.
- 1 Clear the content of FIFO clear and reset the status of FIFO controller.

BUSY Status of the controller. If the controller is in busy state, the register bit will be '1'. Otherwise '0'.

- The controller is in busy state.
- The controller is in idle state.

MSDC+0008h MS/SD Memory Card Controller Interrupt Register

MSDC INT

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									SDIOI RQ	SDR1 BIRQ	MSIFI RQ	SDMC IRQ		SDCM DIRQ	PINIR Q	DIRQ
Type									RC	RC	RC	RC	RC	RC	RC	RC
Reset									0	0	0	0	0	0	0	0

The register contains the status of interrupts. Note that the register still show status of interrupt even though interrupt is disabled, that is, the register bit INTEN of the register MSDC CFG is set to '0. It implies that software interrupt can be implemented by polling the register bit INT of the register MSDC STA and this register. However, if hardware interrupt is desired, remember to clear the register before setting the register bit INTEN of the register MSDC CFG to '1'. Or undesired hardware interrupt arisen from previous interrupt status may take place.

- Data Request Interrupt. The register bit indicates if any interrupt for data request exists. Whenever data request exists and data request as an interrupt source is enabled, i.e., the register bit DIRQEN in the register MSDC CFG is set to '1', the register bit will be active. It will be reset when reading it. For software, data requests can be recognized by polling the register bit DRQ or by data request interrupt. Data request interrupts will be generated every FIFOTHD data transfers.
 - No Data Request Interrupt.
 - Data Request Interrupt occurs.
- **PINIRQ** Pin Change Interrupt. The register bit indicates if any interrupt for memory card insertion/removal exists. Whenever memory card is inserted or removed and card detection interrupt is enabled, i.e., the register bit PINEN in the register MSDC_CFG is set to '1', the register bit will be set to '1'. It will be reset when the register is read.
 - 0 Otherwise.
 - 1 Card is inserted or removed.
- **SDCMDIRQ** SD Bus CMD Interrupt. The register bit indicates if any interrupt for SD CMD line exists. Whenever interrupt for SD CMD line exists, i.e., any bit in the register SDC CMDSTA is active, the register bit will be set to '1' if interrupt is enabled. It will be reset when the register is read.
 - No SD CMD line interrupt.
 - 1 SD CMD line interrupt exists.
- SDDATIRQ SD Bus DAT Interrupt. The register bit indicates if any interrupt for SD DAT line exists. Whenever interrupt for SD DAT line exists, i.e., any bit in the register SDC DATSTA is active, the register bit will be set to '1' if interrupt is enabled. It will be reset when the register is read.
 - No SD DAT line interrupt.
 - 1 SD DAT line interrupt exists.
- **SDMCIRQ**SD Memory Card Interrupt. The register bit indicates if any interrupt for SD Memory Card exists.

Whenever interrupt for SD Memory Card exists, i.e., any bit in the register SDC CSTA is active, the register bit will be set to '1' if interrupt is enabled. It will be reset when the register is read.

- No SD Memory Card interrupt.
- 1 SD Memory Card interrupt exists.
- **MSIFIRQ** MS Bus Interface Interrupt. The register bit indicates if any interrupt for MS Bus Interface exists. Whenever interrupt for MS Bus Interface exists, i.e., any bit in the register MSC STA is active, the register bit will be set to '1' if interrupt is enabled. It will be reset when the register MSDC STA or MSC STA is read.
 - No MS Bus Interface interrupt.
 - MS Bus Interface interrupt exists.

SDR1BIRQ SD/MMC R1b Response Interrupt. The register bit will be active when a SD/MMC command with R1b response finishes and the DAT0 line has transition from busy to idle state. Single block write commands with R1b response will cause the interrupt when the command completes no matter successfully or with CRC error. However, multi-block write commands with R1b response do not cause the interrupt because multi-block write commands are always stopped by STOP_TRANS commands.

STOP TRANS commands (with R1b response) behind multi-block write commands will cause the interrupt. Single block read command with R1b response will cause the interrupt when the command completes but multi-block read commands do not. Note that STOP TRANS commands (with R1b response) behind multi-block read commands will cause the interrupt.

- No interrupt for SD/MMC R1b response.
- 1 Interrupt for SD/MMC R1b response exists.

MSDC+000Ch MS/SD Memory Card Controller Data Register

MSDC DAT

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								DATA[31:16]							
Type								R/	W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								DATA	[15:0]							
Type								R/	W							

The register is used to read/write data from/to FIFO inside MS/SD controller. Data access is in unit of 32 bits.

MSDC+0010h MS/SD Memory Card Pin Status Register

MSDC PS

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								CMD				D	AT T			
Type								RO				R	0			
Reset								-	-							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	(DDEB	OUNCI	E								PINC HG	PIN0	POEN 0	PIEN0	CDEN
Туре		RW										RC	RO	R/W	R/W	R/W
Reset		00	00									0	1	0	0	0

The register is used for card detection. When the memory card controller is powered on, and the system is powered on, the power for the memory card is still off unless power has been supplied by the PMIC. Meanwhile, pad for card detection defaults to pull down when the system is powered on. The scheme of card detection for MS is the same as that for SD/MMC.

For detecting card insertion, first pull up INS pin, and then enable card detection and input pin at the same time. After 32 cycles of controller clock, status of pin changes will emerge. For detecting card removal, just keep enabling card detection and input pin.

CDEN Card Detection Enable. The register bit is used to enable or disable card detection.

- O Card detection is disabled.
- 1 Card detection is enabled.

PIEN0 The register bit is used to control input pin for card detection.

- Input pin for card detection is disabled.
- 1 Input pin for card detection is enabled.

POEN0 The register bit is used to control output of input pin for card detection.

- Output of input pin for card detection is disabled.
- 1 Output of input pin for card detection is enabled.

PINO The register shows the value of input pin for card detection.

- The value of input pin for card detection is logic low.
- 1 The value of input pin for card detection is logic high.

PINCHG Pin Change. The register bit indicates the status of card insertion/removal. If memory card is inserted or removed, the register bit will be set to '1' no matter pin change interrupt is enabled or not. It will be cleared when the register is read.

- Otherwise.
- 1 Card is inserted or removed.

CDDEBOUNCEThe register field specifies the time interval for card detection de-bounce. Its default value is 0. It means that de-bounce interval is 32 cycle time of 32KHz. The interval will extend one cycle time of 32KHz by increasing the counter by 1.

DAT Memory Card Data Lines.

CMD Memory Card Command Lines.

MSDC+0014h MS/SD Memory Card Controller IO Control Register MSDC_IOCON

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				DI	_T											
Type				R/	W											
Reset				0000	0010											
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	CMDR E						PRC	FG3	SRCF G1	SRCF G0	0	DCCFG	§1	0	DCCFG	0
Туре	R/W						R/	W	R/W	R/W		R/W			R/W	
Reset							R/W 10		1	1		000			011	

The register specifies **Output Driving Capability** and **Slew Rate** of IO pads for MSDC. The reset value is suggestion setting. If output driving capability of the pins DAT0, DAT1, DAT2 and DAT3 is too large, it's possible to arise ground bounce and thus result in glitch on SCLK.

ODCCFG0 Output driving capability the pins CMD/BS and SCLK

000 4mA

010 8mA

100 12mA

110 16mA

ODCCFG1 Output driving capability the pins DAT0, DAT1, DAT2 and DAT3

000 4mA

010 8mA

100 12mA

110 16mA

SRCFG0 Output driving capability the pins CMD/BS and SCLK

O Fast Slew Rate

1 Slow Slew Rate

SRCFG1 Output driving capability the pins DAT0, DAT1, DAT2 and DAT3

O Fast Slew Rate

1 Slow Slew Rate

PRCFG3 Pull Up/Down Register Configuration for the pin INS. The default value is 10.

00 Pull up resistor and pull down resistor in the I/O pad of the pin INS are all disabled.

01 Pull down resistor in the I/O pad of the pin INS is enabled.

10 Pull up resistor in the I/O pad of the pin INS is enabled.

11 Use keeper of IO pad.

CMDRE The register bit is used to determine whether the host should latch response token (which is sent from card on CMD line) at rising edge or falling edge of serial clock.

• Host latches response at rising edge of serial clock

1 Host latches response at falling edge of serial clock

DLT Data Latch Timing. The register is used for SW to select the latch timing on data line.

Figure 3 illustrates the data line latch timing. sclk_out is the serial clock output to card. div_clk is the internal clock used for generating divided clock. The number "1 2 1 2" means the current sclk_out is divided from div_clk by a ratio of 2. data_in is the output data from card, and latched_data(r)/(f) is the rising/falling edge latched data inside the host (configured by RED in MSDC_CFG). In this example, SCLKF(in MSDC_CFG) is set to 8'b0 which means the division ratio is 2, and DLT is set to 1. Note that the value of DLT CANNOT be set as 0 and its value should not exceed the division ratio (in the example, the division ratio is 2). Also note that, the latching time will be one div_clk later than the indicated DLT value and the falling edge is always half div_clk ahead from rising edge. The default value of DLT is set to 8'b2.

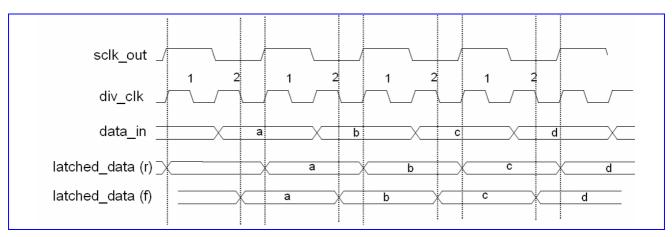


Figure 3 Illustration of data line latch timing

6.5.3.2 SD Memory Card Controller Register Definitions

MSDC+0020h SD Memory Card Controller Configuration Register SDC CFG

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				DT	ОС					WD	OD		SDIO	MDL W8	MDLE N	SIEN
Type				R/	W					R	W		R/W	R/W	R/W	R/W
Reset				0000	0000					00	00		0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		BSY	DLY							BLK	LEN					
Type		R/	W							R/	W					
Reset		10	00						•	000000	000000	•	•		•	

The register is used for configuring the MS/SD Memory Card Controller when it is configured as the host of SD Memory Card. If the controller is configured as the host of Memory Stick, the contents of the register have no impact on the operation of the controller. Note that SDC CFG[31:16] can be accessed by 16-bit APB bus access.

BLKLEN It refers to Block Length. The register field is used to define the length of one block in unit of byte in a data transaction. The maximal value of block length is 2048 bytes.

 000000000000
 Reserved.

 000000000001
 Block length is 1 byte.

 000000000010
 Block length is 2 bytes.

01111111111 Block length is 2047 bytes. **100000000000** Block length is 2048 bytes.

BSYDLY The register field is only valid for the commands with R1b response. If the command has a response of R1b type, MS/SD controller must monitor the data line 0 for card busy status from the bit time that is two serial clock cycles after the command end bit to check if operations in SD/MMC Memory Card have finished.

The register field is used to expand the time between the command end bit and end of detection period to detect card busy status. If time is up and there is no card busy status on data line 0, then the controller will abandon the detection.

0000 No extend.

0001 Extend one more serial clock cycle.

0010 Extend two more serial clock cycles.

. . .

1111 Extend fifteen more serial clock cycle.

SIEN Serial Interface Enable. It should be enabled as soon as possible before any command.

- **0** Serial interface for SD/MMC is disabled.
- 1 Serial interface for SD/MMC is enabled.

MDLW8 Eight Data Line Enable. The register works when MDLEN is enabled. The register can be enabled only when MultiMediaCard 4.0 is applied and detected by software application.

- **0** 4-bit Data line is enabled.
- 1 8-bit Data line is enabled.

SDIO SDIO Enable.

- SDIO mode is disabled
- 1 SDIO mode is enabled

MDLENMultiple Data Line Enable. The register can be enabled only when SD Memory Card is applied and detected by software application. It is the responsibility of the application to program the bit correctly when an MultiMediaCard is applied. If an MultiMediaCard is applied and 4-bit data line is enabled, then 4 bits will be output every serial clock. Therefore, data integrity will fail.

- **0** 4-bit Data line is disabled.
- 1 4-bit Data line is enabled.

WDOD Write Data Output Delay. The period from finish of the response for the initial host write command or the last write data block in a multiple block write operation to the start bit of the next write data block requires at least two serial clock cycles. The register field is used to extend the period (Write Data Output Delay) in unit of one serial clock.

0000 No extend.

0001 Extend one more serial clock cycle.

0010 Extend two more serial clock cycles.

. . .

1111 Extend fifteen more serial clock cycle.

DTOC Data Timeout Counter. The period from finish of the initial host read command or the last read data block in a multiple block read operation to the start bit of the next read data block requires at least two serial clock cycles. The counter is used to extend the period (Read Data Access Time) in unit of 65,536 serial clock. See the register field description of the register bit RDINT for reference.

 00000000
 Extend 65,536 more serial clock cycle.

 00000001
 Extend 65,536x2 more serial clock cycle.

 00000010
 Extend 65,536x3 more serial clock cycle.

. . .

11111111 Extend 65,536x 256 more serial clock cycle.

MSDC+0024h SD Memory Card Controller Command Register

SDC CMD

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																CMDF AIL
Туре																R/W
Reset																0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Name	INTC	STOP	RW	DTYPE	IDRT	RSPTYP	BREA K	CMD
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	00	0	000	0	000000

The register defines a SD Memory Card command and its attribute. Before MS/SD controller issues a transaction onto SD bus, application shall specify other relative setting such as argument for command. After application writes the register, MS/SD controller will issue the corresponding transaction onto SD serial bus. If the command is GO_IDLE_STATE, the controller will have serial clock on SD/MMC bus run 128 cycles before issuing the command.

CMD SD Memory Card command. It is totally 6 bits.

BREAKAbort a pending MMC GO_IRQ_MODE command. It is only valid for a pending GO_IRQ_MODE command waiting for MMC interrupt response.

- Other fields are valid.
- 1 Break a pending MMC GO_IRQ_MODE command in the controller. Other fields are invalid.

RSPTYP The register field defines response type for the command. For commands with R1 and R1b response, the register SDC_CSTA (not SDC_STA) will update after response token is received. This register SDC_CSTA contains the status of the SD/MMC and it will be used as response interrupt sources. Note that if CMD7 is used with all 0's RCA then RSPTYP must be "000". And the command "GO_TO_IDLE" also have RSPTYP='000'.

- OOO There is no response for the command. For instance, broadcast command without response and GO INACTIVE STATE command.
- **001** The command has R1 response. R1 response token is 48-bit.
- **010** The command has R2 response. R2 response token is 136-bit.
- **011** The command has R3 response. Even though R3 is 48-bit response, but it does not contain CRC checksum.
- 100 The command has R4 response. R4 response token is 48-bit. (Only for MMC)
- 101 The command has R5 response. R5 response token is 48-bit. (Only for MMC)
- 110 The command has R6 response. R6 response token is 48-bit.
- 111 The command has R1b response. If the command has a response of R1b type, MS/SD controller must monitor the data line 0 for card busy status from the bit time that is two or four serial clock cycles after the command end bit to check if operations in SD/MMC Memory Card have finished. There are two cases for detection of card busy status. The first case is that the host stops the data transmission during an active write data transfer. The card will assert busy signal after the stop transmission command end bit followed by four serial clock cycles. The second case is that the card is in idle state or under a scenario of receiving a stop transmission command between data blocks when multiple block write command is in progress. The register bit is valid only when the command has a response token.

Note that the response type R4 and R5 mentioned above is for MMC only.

For SDIO, RSPTYP definition is different and shall be set to:

- (i) CMD5 of SDIO is to be issued. (Where the response is defined as R4 in SDIO spec)
 (ii) CMD52 or CMD53 for READ is to be issued. (Where the response is defined as R5 in SDIO spec)
- 111 CMD52 for I/O abort or CMD53 for WRITE is to be issued (Where the response is defined as R5 in SDIO spec)

IDRT Identification Response Time. The register bit indicates if the command has a response with N_{ID} (that is, 5 serial clock cycles as defined in SD Memory Card Specification Part 1 Physical Layer Specification version 1.0) response time. The register bit is valid only when the command has a response token. Thus the register bit must be set to '1' for CMD2 (ALL_SEND_CID) and ACMD41 (SD_APP_OP_CMD).

- Otherwise.
- 1 The command has a response with N_{ID} response time.

DTYPE The register field defines data token type for the command.

- 00 No data token for the command
- **01** Single block transaction
- 10 Multiple block transaction. That is, the command is a multiple block read or write command.
- 11 Stream operation. It only shall be used when an MultiMediaCard is applied.
- **RW** The register bit defines the command is a read command or write command. The register bit is valid only when the command will cause a transaction with data token.
 - **0** The command is a read command.
 - 1 The command is a write command.
- The register bit indicates if the command is a stop transmission command. It should be set to 1 when CMD12 (SD/MMC) or CMD52 with I/O abort (SDIO) is to be issued.
 - **0** The command is not a stop transmission command.
 - 1 The command is a stop transmission command.
- **INTC** The register bit indicates if the command is GO_IRQ_STATE. If the command is GO_IRQ_STATE, the period between command token and response token will not be limited.
 - The command is not GO_IRQ_STATE.
 - 1 The command is GO IRQ STATE.
- **CMDFAIL** The register bit is used for controlling SDIO interrupt period when CRC error or Command/Data timeout condition occurs. It is useful only when SDIO 4-bit mode is activated.
 - O SDIO Interrupt period will re-start after a stop command (CMD12) or I/O abort command (CMD52) is issued.
 - 1 SDIO Interrupt period will re-start whenever DAT line is not busy.

MSDC+0028h SD Memory Card Controller Argument Register

SI	C	Α	RG
	_		

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								ARG [31:16]							
Type								R/	W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								ARG	[15:0]							
Type								R/	W							

The register contains the argument of the SD/MMC Memory Card command.

MSDC+002Ch SD Memory Card Controller Status Register

SDC_STA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	WP											R1BS Y	RSV	DATB USY	CMDB USY	SDCB USY
Type	R											RO	RO	RO	RO	RO
Reset	-											0	0	0	0	0

The register contains various status of MS/SD controller as the controller is configured as the host of SD Memory Card.

SDCBUSY The register field indicates if MS/SD controller is busy, that is, any transmission is going on CMD or DAT line on SD bus.

- MS/SD controller is idle.
- 1 MS/SD controller is busy.
- **CMDBUSY** The register field indicates if any transmission is going on CMD line on SD bus.
 - No transmission is going on CMD line on SD bus.
 - 1 There exists transmission going on CMD line on SD bus.

DATBUSY The register field indicates if any transmission is going on DAT line on SD bus. For those commands without data but still involving DAT line, the register bit is useless. For example, if an Erase command is

issued, then checking if the register bit is '0' before issuing next command with data would not guarantee that the controller is idle. In this situation, use the register bit SDCBUSY.

- No transmission is going on DAT line on SD bus.
- 1 There exists transmission going on DAT line on SD bus.

R1BSY The register field shows the status of DAT line 0 for commands with R1b response.SD/MMC Memory card is not busy.

- 1 SD/MMC Memory card is busy.
- WP It is used to detect the status of Write Protection Switch on SD Memory Card. The register bit shows the status of Write Protection Switch on SD Memory Card. There is no default reset value. The pin WP (Write Protection) is also only useful while the controller is configured for SD Memory Card.
 - 1 Write Protection Switch ON. It means that memory card is desired to be write-protected.
 - **0** Write Protection Switch OFF. It means that memory card is writable.

MSDC+0030h SD Memory Card Controller Response Register 0

SDC RESP0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								RESP	[31:16]							
Type								R	0							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								RESP	[15:0]							
Type								R	0							

The register contains parts of the last SD/MMC Memory Card bus response. See description for the register field SDC RESP3.

MSDC+0034h SD Memory Card Controller Response Register 1

SDC_RESP1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								RESP	[63:48]							
Type								R	0							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								RESP	[47:32]							
Type								R	0							_

The register contains parts of the last SD/MMC Memory Card bus response. See description for the register field SDC_RESP3.

MSDC+0038h SD Memory Card Controller Response Register 2

SDC RESP2

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								RESP	[95:80]							
Type								R	.0							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								RESP	[79:64]							
Type								R	.0							

The register contains parts of the last SD/MMC Memory Card bus response. See description for the register field SDC RESP3.

MSDC+003Ch SD Memory Card Controller Response Register 3

SDC_RESP3

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							R	ESP [1	27:112	2]						
Type								R	0							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							F	RESP [111:96]							
Type				•				R	0	•	•	•	•	•		

The register contains parts of the last SD/MMC Memory Card bus response. The register fields SDC_RESP0, SDC_RESP1, SDC_RESP2 and SDC_RESP3 compose the last SD/MMC Memory card bus response. For response of type R2, that is, response of the command ALL_SEND_CID, SEND_CSD and SEND_CID, only bit 127 to 0 of response token is stored in the register field SDC_RESP0, SDC_RESP1, SDC_RESP2 and SDC_RESP3. For response of other types, only bit 39 to 8 of response token is stored in the register field SDC_RESP0.

MSDC+0040h SD Memory Card Controller Command Status Register

SDC CMDSTA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name													INTERNET	RSPC RCER R	CMDT O	CMD RDY
Type													RC	RC	RC	RC
Reset													0	0	0	0

The register contains the status of MS/SD controller during command execution and that of MS/SD bus protocol after command execution when MS/SD controller is configured as the host of SD/MMC Memory Card. The register will also be used as interrupt sources. The register will be cleared when reading the register. Meanwhile, if interrupt is enabled and thus interrupt caused by the register is generated, reading the register will deassert the interrupt.

CMDRDY For command without response, the register bit will be '1' once the command completes on SD/MMC bus. For command with response, the register bit will be '1' whenever the command is issued onto SD/MMC bus and its corresponding response is received **without CRC error**.

- Otherwise.
- Command with/without response finish successfully without CRC error.

CMDTO Timeout on CMD detected. A '1' indicates that MS/SD controller detected a timeout condition while waiting for a response on the CMD line.

- Otherwise.
- 1 MS/SD controller detected a timeout condition while waiting for a response on the CMD line.

RSPCRCERR CRC error on CMD detected. A '1' indicates that MS/SD controller detected a CRC error after reading a response from the CMD line.

- Otherwise.
- 1 MS/SD controller detected a CRC error after reading a response from the CMD line.

MMCIRQ MMC requests an interrupt. A '1' indicates that a MMC supporting command class 9 issued an interrupt request.

- Otherwise.
- 1 A '1' indicates that a MMC supporting command class 9 issued an interrupt request.

MSDC+0044h SD Memory Card Controller Data Status Register

SDC_DATSTA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														DATC RCER R	DATT O	BLKD ONE
Type														RC	RC	RC
Reset														0	0	0

The register contains the status of MS/SD controller during data transfer on DAT line(s) when MS/SD controller is configured as the host of SD/MMC Memory Card. The register also will be used as interrupt sources. The register will be cleared when reading the register. Meanwhile, if interrupt is enabled and thus interrupt caused by the register is generated, reading the register will deassert the interrupt.

BLKDONE The register bit indicates the status of data block transfer.

Otherwise.

- A data block was successfully transferred.
- **DATTO** Timeout on DAT detected. A '1' indicates that MS/SD controller detected a timeout condition while waiting for data token on the DAT line.
 - Otherwise.
 - 1 MS/SD controller detected a timeout condition while waiting for data token on the DAT line.
- **DATCRCERR** CRC error on DAT detected. A '1' indicates that MS/SD controller detected a CRC error after reading a block of data from the DAT line or SD/MMC signaled a CRC error after writing a block of data to the DAT line.
 - Otherwise.
 - MS/SD controller detected a CRC error after reading a block of data from the DAT line or SD/MMC signaled a CRC error after writing a block of data to the DAT line.

MSDC+0048h SD Memory Card Status Register

SDC CSTA

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								CSTA	[31:16]							
Type								R	C							
Reset							000	000000	000000	00						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
Type																
Reset							000	000000	000000	00						

After commands with R1 and R1b response this register contains the status of the SD/MMC card and it will be used as response interrupt sources. In all register fields, logic high indicates error and logic low indicates no error. The register will be cleared when reading the register. Meanwhile, if interrupt is enabled and thus interrupt caused by the register is generated, reading the register will deassert the interrupt.

- **CSTA31 OUT OF RANGE**. The command's argument was out of the allowed range for this card.
- **CSTA30 ADDRESS_ERROR**. A misaligned address that did not match the block length was used in the command.
- **CSTA29 BLOCK_LEN_ERROR**. The transferred block length is not allowed for this card, or the number of transferred bytes does not match the block length.
- **CSTA28 ERASE SEQ ERROR.** An error in the sequence of erase commands occurred.
- **CSTA27 ERASE PARAM**. An invalid selection of write-blocks for erase occurred.
- **CSTA26 WP_VIOLATION**. Attempt to program a write-protected block.
- **CSTA25** Reserved. Return zero.
- **CSTA24 LOCK_UNLOCK_FAILED**. Set when a sequence or password error has been detected in lock/unlock card command or if there was an attempt to access a locked card.
- **CSTA23 COM_CRC_ERROR**. The CRC check of the previous command failed.
- **CSTA22 ILLEGAL COMMAND.** Command not legal for the card state.
- **CSTA21** CARD ECC FAILED. Card internal ECC was applied but failed to correct the data.
- **CSTA20 CC ERROR**. Internal card controller error.
- **CSTA19 ERROR**. A general or an unknown error occurred during the operation.
- **CSTA18 UNDERRUN**. The card could not sustain data transfer in stream read mode.
- **CSTA17 OVERRUN**. The card could not sustain data programming in stream write mode.
- **CSTA16 CID/CSD_OVERWRITE**. It can be either one of the following errors: 1. The CID register has been already written and cannot be overwritten 2. The read only section of the CSD does not match the card. 3. An attempt to reverse the copy (set as original) or permanent WP (unprotected) bits was made.
- **CSTA[15:4]** Reserved. Return zero.
- **CSTA3 AKE SEQ ERROR**. Error in the sequence of authentication process
- **CSTA[2:0]** Reserved. Return zero.

MSDC+004Ch SD Memory Card IRQ Mask Register 0

SDC_IRQMASK

0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							IR	QMAS	K [31:1	6]						
Type								R/	W							
Reset							000	000000	000000	000						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
Type																
Reset							000	000000	000000	000						

The register contains parts of SD Memory Card Interrupt Mask Register. See the register description of the register SDC_IRQMASK1 for reference. The register will mask interrupt sources from the register SDC_CMDSTA and SDC_DATSTA. IRQMASK[15:0] is for SDC_CMDSTA and IRQMASK[31:16] for SDC_DATSTA. A '1' in some bit of the register will mask the corresponding interrupt source with the same bit position. For example, if IRQMASK[0] is '1' then interrupt source from the register field CMDRDY of the register SDC_CMDSTA will be masked. A '0' in some bit will not cause interrupt mask on the corresponding interrupt source from the register SDC_CMDSTA and SDC_DATSTA.

MSDC+0050h SD Memory Card IRQ Mask Register 1

SDC_IRQMASK

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							IR	QMASI	K [63:4	8]						
Type								R/	W							
Reset							000	000000	000000	000						
Bit	15															
Name																
Type	·															
Reset			•				000	000000	000000	000	•					

The register contains parts of SD Memory Card Interrupt Mask Register. The registers SDC_IRQMASK1 and SDC_IRQMASK0 compose the SD Memory Card Interrupt Mask Register. The register will mask interrupt sources from the register SDC_CSTA. A '1' in some bit of the register will mask the corresponding interrupt source with the same bit position. For example, if IRQMASK[63] is '1' then interrupt source from the register field OUT_OF_RANGE of the register SDC_CSTA will be masked. A '0' in some bit will not cause interrupt mask on the corresponding interrupt source from the register SDC_CSTA.

MSDC+0054h SDIO Configuration Register

SDIO CFG

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														DSBS EL	INTSE L	INTE N
Type														R/W	R/W	R/W
Reset														0	0	0

The register is used to configure functionality for SDIO.

INTEN Interrupt enable for SDIO.

- O Disable
- 1 Enable

INTSELInterrupt Signal Selection

- Use data line 1 as interrupt signal
- 1 Use data line 5 as interrupt signal

DSBSEL Data Block Start Bit Selection.

- **0** Use data line 0 as start bit of data block and other data lines are ignored.
- 1 Start bit of a data block is received only when data line 0-3 all become low.

MSDC+0058h SDIO Status Register

SDIO_STA

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																IRQ
Type																RO
Reset																0

6.5.3.3 Memory Stick Controller Register Definitions

MSDC+0060h Memory Stick Controller Configuration Register

MSC_CFG

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	PMOD E	PRED											В	USYC	IT	SIEN
Type	R/W	R/W												R/W		R/W
Reset	0	0												101		0

The register is used for Memory Stick Controller Configuration when MS/SD controller is configured as the host of Memory Stick.

SIEN Serial Interface Enable. It should be enabled as soon as possible before any command.

- **0** Serial interface for Memory Stick is disabled.
- 1 Serial interface for Memory Stick is enabled.

BUSYCNT RDY timeout setting in unit of serial clock cycle. The register field is set to the maximum BUSY timeout time (set value x 4 +2) to wait until the RDY signal is output from the card. RDY timeout error detection is not performed when BUSYCNT is set to 0. The initial value is 0x5. That is, BUSY signal exceeding 5x4+2=22 serial clock cycles causes a RDY timeout error.

000 Not detect RDY timeout

001 BUSY signal exceeding 1x4+2=6 serial clock cycles causes a RDY timeout error.

010 BUSY signal exceeding 2x4+2=10 serial clock cycles causes a RDY timeout error.

...

111 BUSY signal exceeding 7x4+2=30 serial clock cycles causes a RDY timeout error.

PRED Parallel Mode Rising Edge Data. The register field is only valid in parallel mode, that is, MSPRO mode. In parallel mode, data must be driven and latched at the falling edge of serial clock on MS bus. In order to mitigate hold time issue, the register can be set to '1' such that write data is driven by MSDC at the rising edge of serial clock on MS bus.

- Write data is driven by MSDC at the falling edge of serial clock on MS bus.
- Write data is driven by MSDC at the rising edge of serial clock on MS bus.

PMODE Memory Stick PRO Mode.

- Use Memory Stick serial mode.
- 1 Use Memory Stick parallel mode.

MSDC+0064h Memory Stick Controller Command Register

MSC_CMD

	Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
--	-----	----	----	----	----	----	----	---	---	---	---	---	---	---	---	---	---

Name	PID		DATASIZE
Type	R/W		R/W
Reset	0000		000000000

The register is used for issuing a transaction onto MS bus. Transaction on MS bus is started by writing to the register MSC_CMD. The direction of data transfer, that is, read or write transaction, is extracted from the register field PID. 16-bit CRC will be transferred for a write transaction even if the register field DATASIZE is programmed as zero under the condition where the register field NOCRC in the register MSDC_CFG is '0'. If the register field NOCRC in the register MSDC_CFG is '1' and the register field DATASIZE is programmed as zero, then writing to the register MSC_CMD will not induce transaction on MS bus. The same applies for when the register field RDY in the register MSC_STA is '0'.

DATASIZE Data size in unit of byte for the current transaction.

000000000 Data size is 0 byte.

000000001 Data size is one byte.

000000010 Data size is two bytes.

...

0111111111 Data size is 511 bytes.

100000000 Data size is 512 bytes.

Protocol ID. It is used to derive Transfer Protocol Code (TPC). The TPC can be derived by cascading PID and its reverse version. For example, if PID is 0x1, then TPC is 0x1e, that is, 0b0001 cascades 0b1110. In addition, the direction of the bus transaction can be determined from the register bit 15, that is, PID[3].

MSDC+0068h Memory Stick Controller Auto Command Register

MS	C	Δ	CI	V	D
1410		~	VI	v	J

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		AF	PID							ADAT	ASIZE					ACEN
Type		R/	W							R/	W					R/W
Reset		01	11	•				•		00000	00001		•			0

The register is used for issuing a transaction onto MS bus automatically after the MS command defined in MSC_CMD completed on MS bus. Auto Command is a function used to automatically execute a command like GET_INT or READ_REG for checking status after SET_CMD ends. If auto command is enabled, the command set in the register will be executed once the INT signal on MS bus is detected. After auto command is issued onto MS bus, the register bit ACEN will become disabled automatically. Note that if auto command is enabled then the register bit RDY in the register MSC_STA caused by the command defined in MSC_CMD will be suppressed until auto command completes. Note that the register field ADATASIZE cannot be set to zero, or the result will be unpredictable.

ACEN Auto Command Enable.

- Auto Command is disabled.
- 1 Auto Command is enabled.

ADATASIZE Data size in unit of byte for Auto Command. Initial value is 0x01.

000000000 Data size is 0 byte.

000000001 Data size is one byte.

000000010 Data size is two bytes.

...

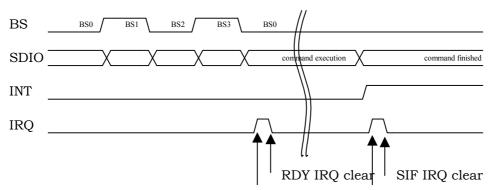
0111111111 Data size is 511 bytes.

100000000 Data size is 512 bytes.

APID Auto Command Protocol ID. It is used to derive Transfer Protocol Code (TPC). Initial value is GSET_INT(0x7).

MSDC+006Ch Memory Stick Controller Status Register

MSC_STA


Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Name	CMDN K	BREQ	ERR	CED				HSRD Y	CRCE R	TOER	SIF	RDY
Type	R	R	R	R				RO	RO	RO	RO	RO
Reset	0	0	0	0				0	0	0	0	1

The register contains various status of Memory Stick Controller, that is, MS/SD controller is configured as Memory Stick Controller. These statuses can be used as interrupt sources. Reading the register will NOT clear it. The register will be cleared whenever a new command is written to the register MSC CMD.

- The register bit indicates the status of transaction on MS bus. The register bit will be cleared when writing to the command register MSC_CMD.
 - Otherwise.
 - 1 A transaction on MS bus is ended.
- The register bit indicates the status of serial interface. If an interrupt is active on MS bus, the register bit will be active. Note the difference between the signal RDY and SIF. When parallel mode is enabled, the signal SIF will be active whenever any of the signal CED, ERR, BREQ and CMDNK is active. In order to separate interrupts caused by the signals RDY and SIF, the register bit SIF will not become active until the register MSDC_INT is read once. That is, the sequence for detecting the register bit SIF by polling is as follows:
 - 1. Detect the register bit RDY of the register MSC_STA
 - 2. Read the register MSDC INT
 - 3. Detect the register bit SIF of the register MSC_STA

- Otherwise.
- 1 An interrupt is active on MS bus
- **TOER** The register bit indicates if a BUSY signal timeout error takes place. When timeout error occurs, the signal BS will become logic low '0'. The register bit will be cleared when writing to the command register MSC_CMD.
 - O No timeout error.
 - 1 A BUSY signal timeout error takes place. The register bit RDY will also be active.
- **CRCER**The register bit indicates if a CRC error occurs while receiving read data. The register bit will be cleared when writing to the command register MSC CMD.
 - Otherwise.
 - 1 A CRC error occurs while receiving read data. The register bit RDY will also be active.
- **HSRDY** The register bit indicates the status of handshaking on MS bus. The register bit will be cleared when writing to the command register MSC_CMD.
 - Otherwise.
 - 1 A Memory Stick card responds to a TPC by RDY.
- The register bit is only valid when parallel mode is enabled. In fact, it's value is from DAT[0] when serial interface interrupt takes place. See Format Specification version 2.0 of Memory Stick Standard (Memory Stick PRO) for more details.
 - O Command does not terminate.

- Command terminates normally or abnormally.
- ERR The register bit is only valid when parallel mode is enabled. In fact, it's value is from DAT[1] when serial interface interrupt takes place. See Format Specification version 2.0 of Memory Stick Standard (Memory Stick PRO) for more details.
 - Otherwise.
 - 1 Indicate memory access error during memory access command.
- BREQ The register bit is only valid when parallel mode is enabled. In fact, it's value is from DAT[2] when serial interface interrupt takes place. See Format Specification version 2.0 of Memory Stick Standard (Memory Stick PRO) for more details.
 - Otherwise.
 - 1 Indicate request for data.
- **CMDNK** The register bit is only valid when parallel mode is enabled. In fact, it's value is from DAT[3] when serial interface interrupt takes place. See Format Specification version 2.0 of Memory Stick Standard (Memory Stick PRO) for more details.
 - Otherwise
 - 1 Indicate non-recognized command.

6.5.4 Application Notes

6.5.4.1 Initialization Procedures After Power On

Disable power down control for MSDC module

Remember to power on MSDC module before starting any operation to it.

6.5.4.2 Card Detection Procedures

The pseudo code is as follows:

The pseudo code segment perform the following tasks:

- 1. First pull up CD/DAT3 (INS) pin.
- 2. Enable card detection and input pin at the same time.
- 3. Turn on power for memory card.
- 4. Detect insertion of memory card.

6.5.4.3 Notes on Commands

For MS, check if MSC_STA.RDY is '1' before issuing any command.

For SD/MMC, if the command desired to be issued involves data line, for example, commands with data transfer or R1b response, check if SDC_STA.SDCBUSY is '0' before issuing. If the command desired to be issued does not involve data line, only check if SDC_STA.CMDBUSY is '0' before issuing.

6.5.4.4 Notes on Data Transfer

 For SD/MMC, if multiple-block-write command is issued then only issue STOP_TRANS command inter-blocks instead of intra-blocks.

Once SW decides to issue STOP_TRANS commands, no more data transfer from or to the controller.

6.5.4.5 Notes on Frequency Change

Before changing the frequency of serial clock on MS/SD/MMC bus, it is necessary to disable serial interface of the controller. That is, set the register bit SIEN of the register SDC_CFG to '0' for SD/MMC controller, and set the register bit SIEN of the register MSC_CFG to '0' for Memory Stick controller. Serial interface of the controller needs to be enabled again before starting any operation to the memory card.

6.5.4.6 Notes on Response Timeout

If a read command doest not receive response, that is, it terminates with a timeout, then register SDC_DATSTA needs to be cleared by reading it. The register bit "DATTO" should be active. However, it may take a while before the register bit becomes active. The alternative is to send the STOP_TRANS command. However, this method will receive response with illegal-command information. Also, remember to check if the register bit SDC_STA.CMDBUSY is active before issuing the STOP_TRANS command. The procedure is as follows:

- 1. Read command => response time out
- Issue STOP_TRANS command => Get Response
- 3. Read register SDC_DATSTA to clear it

6.5.4.7 Source or Destination Address is not word-aligned

It is possible that the source address is not word-aligned when data move from memory to MSDC. Similarly, destination address may be not word-aligned when data move from MSDC to memory. This can be solved by setting DMA byte-to-word functionality.

- 1. DMAn CON.SIZE=0
- 2. DMAn CON.BTW=1
- 3. DMAn CON.BURST=2 (or 4)
- 4. DMAn COUNT=byte number instead of word number
- 5. fifo threshold setting must be 1 (or 2), depending on DMAn_CON.BURST

Note n=4 ~ 11

6.5.4.8 Miscellaneous notes

Siemens MMC card: When a write command is issued and followed by a STOP_TRANS command, Siemens MMC card will de-assert busy status even though flash programming has not yet finished. Software must use "Get Status" command to make sure that flash programming finishes.

6.6 Graphic Memory Controller

6.6.1 General Description

Graphic memory controller provides channels to allow graphic engines to access SYSRAM and External Memory. Simple Request-Acknowledge handshaking scheme is employed here to ease the complexity of memory access control circuitry in each graphic engine.

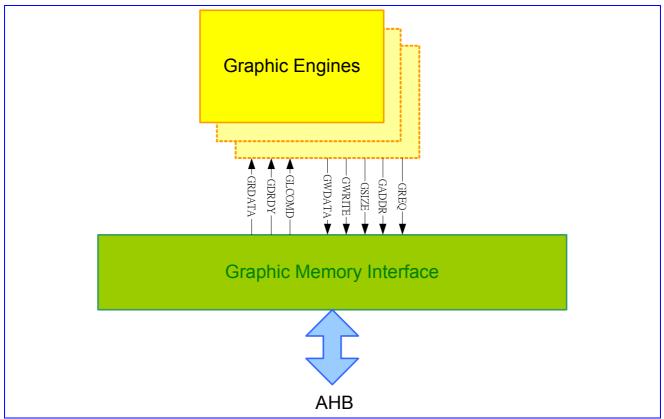
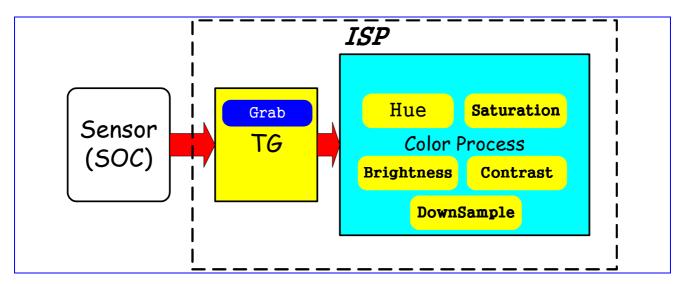


Figure 68 Graphic memory controller

6.6.2 Register Definitions

Register Address	Register Function	Acronym
CONFG + 0600h	GMC Memory Bank Control Register	SYSRAM_CON

Table 43 GMC Registers


CONFG+0600 GMC Memory Bank Control Register SYSRAM_CON h 15 Bit 12 14 13 11 10 9 8 6 5 4 3 **PAUS** Name **ASST** RO R/W Type 0 0 Reset

SYSRAM Bank mapping of GMC ports.

PAUSE To pause EMI port access. Any access to the address range of EMI will be blocked if this bit is set.ASST GMC assertion. The value of the register bit is "1" if there is abnormal access to the address range of 0x4001_0000~0x4003_ffff.

6.7 Camera Interface

MT6225 ISP support VGA Sensor YUV422/RGB565 interface. Included Functions are Brightness \cdot Contrast \cdot Saturation \cdot Hue Tuning and Input Image Grab Window. Down Sample Function can be used before image output from ISP.

6.7.1 Register Table

REGISTER ADDRESS	REGISTER NAME	SYNONYM
CAM + 0000h	TG Phase Counter Register	CAM_PHSCNT
CAM + 0004h	Sensor Size Configuration Register	CAM_CAMWIN
CAM + 0008h	TG Grab Range Start/End Pixel Configuration Register	CAM_GRABCOL
CAM + 000Ch	TG Grab Range Start/End Line Configuration Register	CAM_GRABROW
CAM + 0010h	Sensor Mode Configuration Register	CAM_CSMODE
CAM + 0018h	View Finder Mode Control Register	CAM_VFCON
CAM + 001Ch	Camera Module Interrupt Enable Register	CAM_INTEN
CAM + 0020h	Camera Module Interrupt Status Register	CAM_INTSTA
CAM + 0024h	Camera Module Path Config Register	CAM_PATH
CAM + 0028h	Camera Module Input Address Register	CAM_INADDR
CAM + 002Ch	Camera Module Output Address Register	CAM_OUTADDR
CAM + 0030h	Preprocessing Control Register 1	CAM_CTRL1
CAM + 00B8h	Y Channel Configuration Register	CAM_YCHAN
CAM + 00BCh	UV Channel Configuration Register	CAM_UVCHAN
CAM + 00C0h	Space Convert YUV Register 1	CAM_SCONV1
CAM + 00C4h	Space Convert YUV Register 2	CAM_SCONV2
CAM + 0128h	Vertical Subsample Control Register	CAM_VSUB
CAM + 012Ch	Horizontal Subsample Control Register	CAM_HSUB
CAM + 0174h	Result Window Vertical Size Register	RWINV_SEL
CAM + 0178h	Result Window Horizontal Size Register	RWINH_SEL
CAM + 0180h	Camera Interface Debug Mode Control Register	CAM_DEBUG
CAM + 0184h	Camera Module Debug Information Write Out Destination Address	CAM_DSTADDR
CAM + 0188h	Camera Module Debug Information Last Transfer Destination Address	CAM_LSTADDR

CAM + 018Ch	Camera Module Frame Buffer Transfer Out Count Register	CAM_XFERCNT
CAM + 0190h	Sensor Test Module Configuration Register 1	CAM_MDLCFG1
CAM + 0194h	Sensor Test Module Configuration Register 2	CAM_MDLCFG2
CAM + 01D8h	Cam Reset Register	CAM_RESET
CAM + 01DCh	TG Status Register	TG_STATUS
CAM + 0248h	GMC Debug Register	CAM_GMCDEBUG
CAM + 0274h	Cam Version Register	CAM_VERSION

Table 44 Camera Interface Register Map

6.7.1.1 TG Register Definitions

CAM+0000h TG Phase Counter Register

CAM_PHSCNT

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	PCEN		CLKE N	CLKP OL		CLK	CNT			CL	(RS			CL	KFL	
Type	R/W		R/W	R/W		R/W 1				R/	W			R	/W	
Reset	0		0	0		•	1		0 7 6 5 4						1	
Bit	15	14	13	12	11	10	9	8	7 6 5 4			4	3	2	1	0
Name			PXCL K_INV	PXCL	CLKF L_PO L			TGCL K_SE L		PIX	CNT			DLA	тсн	
Type	R/W	R/W	R/W	R/W	R/W			R/W	N R/W			•		R	/W	
Reset	0	0	0	0	0			0	/V R/VV 1						1	-

PCEN TG phase counter enable control

CLKEN Enable sensor master clock (mclk) output to sensor

CLKPOL Sensor master clock polarity control

CLKCNT Sensor master clock frequency divider control.

Sensor master clock will be 52Mhz/CLKCNT, where CLKCNT >=1.

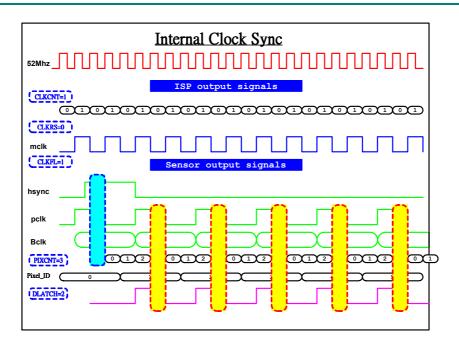
CLKRS Sensor master clock rising edge control
CLKFL Sensor master clock falling edge control

HVALID_EN Sensor hvalid or href enable
PXCLK_EN Sensor clock input monitor.

PXCLK_INV Pixel clock inverse

PXCLK_IN Pixel clock sync enable. If sensor master based clock is 48 Mhz, PXCLK IN must be enabled.

CLKFL_POL Sensor clock falling edge polarity


TGCLK_SEL Sensor master based clock selection (0: 52 Mhz, 1: 48 Mhz)

PIXCNT Sensor data latch frequency control

DLATCH Sensor data latch position control

Example waveform(CLKCNT=1,CLKRS=0,CLKFL=1,PIXCNT=3,DLATCH=2)

CAM+0004h Sensor Size Configuration Register

CAM_CAMWIN

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name										PIXI	ELS					
Type										R/	W					
Reset										ffi	ħ					
Bit	15	14	13	12	11 10 9 8 7 6 5 4 3 2 1 0											
Name										LIN	ES					
Type										R/	W					
Reset										fft	ħ					

PIXEL Total input pixel number Total input line number LINE

TG Grab Range Start/End Pixel Configuration

Register

CAM_GRABCO

CAM+0008h

Reset

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name										STA	\RT						
Type						R/W											
Reset						0											
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name										EI	ND						
Type										R/	W						

0

START Grab start pixel number **END** Grab end pixel number

CAM+000Ch

TG Grab Range Start/End Line Configuration Register

CAM_GRABRO

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name										STA	\RT						
Type						R/W											
Reset					0												
Bit	15	14	13	12	11												
Name										EN	ND						
Type										R/	W						
Reset						•	•	•	•	()		•	•	•		

START Grab start line number
END Grab end line number

CAM+0010h Sensor Mode Configuration Register

CAM_CSMODE

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									VSPO L	HSPO L	PWR ON	RST	AUTO			EN
Type									R/W	R/W	R/W	R/W	R/W			R/W
Reset									0	0	0	0	0			0

VSPOL Sensor Vsync input polarity
HSPOL Sensor Hsync input polarity

AUTO Auto lock sensor input horizontal pixel numbers enable

EN Sensor process counter enable

CAM+0018h View Finder Mode Control Register

CAM_VFCON

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name	AV_S YNC_ SEL								AV_S	YNC_L	INENO	[11:0]					
Type	R/W					R/W											
Reset	0				0												
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name						SI	P_DEL/	AY	SP_M ODE	TAKE _PIC				F	R_CON	1	
Туре						R/W			R/W	R/W					R/W		
Reset							0		0	0					0		

AV_SYNC_SEL Av_sync start point selection

• Start from AV_SYNC_LINENO

1 Start from vsync

AV_SYNC_LINENO Av_sync start point line counts

SP_DELAY Still Picture Mode delay **SP_MODE** Still Picture Mode

TAKE_PIC Take Picture Request

FR_CON Frame Sampling Rate Control

000 Every frame is sampled

001 One frame is sampled every 2 frames

010 One frame is sampled every 3 frames

011 One frame is sampled every 4 frames

100 One frame is sampled every 5 frames

101 One frame is sampled every 6 frames

110 One frame is sampled every 7 frames

111 One frame is sampled every 8 frames

CAM+001Ch Camera Module Interrupt Enable Register

CAM_INTEN

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	VSYN C_INT _SEL															
Type	R/W															
Reset	0															

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								AV_S YNC_I NT	VSYN C_INT			ISPD ONE	IDLE	GMC OVRU N	REZO VRUN	
Type								R/W	R/W			R/W	R/W	R/W	R/W	R/W
Reset								0	0			0	0	0	0	0

VSYNC_SEL Vsync interrupt selection

• From Vsync Falling Edge

1 From Vsync Rising Edge

AV_SYNC_INT AV sync interrupt VSYNC_INT Vsync interrupt

ISPDONE ISP done interrupt enable control

IDLEReturning idle state interrupt enable controlGMCOVRUNGMC port over run interrupt enable controlREZOVRUNResizer over run interrupt enable controlEXPDOExposure done interrupt enable control

CAM+0020h Camera Module Interrupt Status Register

CAM_INTSTA

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								AV_S YNC_I NT	VSYN C_INT			ISPD ONE	IDLE	GMC OVRU N	REZO VRUN	EXPD O
Type								R/W	R			R	R	R	R	R
Reset								0	0			0	0	0	0	0

CAM+0024h Camera Module Path Config Register

CAM_PATH

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	CNTO N	CNTI	MODE	١	WRITE_	LEVE	L	BAYE R10_ OUT	REZ_ DISC ONN	REZ_ LPF_ OFF	1	ATH_T PE				OUTP ATH_ EN
Type	R/W	R	W		R/	W		R/W	RW	RW	R	/W				R/W
Reset	0	()		3	3		0	0	0		0				0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			SWAP _Y	SWAP _CBC R	INDA TA_F ORM AT	INT	YPE_S	SEL		NPATH	I_RAT	E			INPAT H_TH ROTE N	INPA TH_S EL
Type		R/W	R/W	R/W	R/W		R/W			R	W				R/W	R/W
Reset		0	0	0	0		1				0				0	0

CNTON Enable Debug Mode Data Transfer Counter

CNTMODE Data Transfer Count Selection

sRGB countYCbCr count

REZ_DISCONN
Resizer disconnect enable
REZ_LPF_OFF
Resizer low-Pass disable
WRITE_LEVEL
Write FIFO threshold level
10-bit Bayer Format output.
Outpath type should be set to 00.

OUTPATH_TYPE Outpath Type Select

00 Bayer Format

01 ISP output

02 RGB888 Format

03 RGB565 Format

OUTPATH_EN Enable Output to Memory

SWAP_Y YCbCr in Swap Y
SWAP_CBCR YCbCr in Swap Cb Cr
INDATA_FORMAT Sensor Input Data connection

Sensor input Butt connect

INTYPE_SEL Input type selection

000 Bayer Format001 YUV422 Format

Default Input Format: **UYVY**

101 YCbCr422 Format010 RGB Format

To enable YUV422/YCbCr422 input fast mode, refer to CAM + 011C bit 20

INPATH_RATE Input type rate control

INPATH_THROTEN Input path throttle enable

INPATH_SEL Input path selection

Sensor inputFrom memory

CAM+0028h Camera Module Input Address Register

CAM_INADDR

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							CAN	/LINA	DDR[31	:16]						
Type								R/	W							
Reset		0														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							CA	M_INA	DDR[1	5:0]						
Type								R/	W							
Reset								()							

CAM_INADDR

Input memory address

CAM+002Ch Camera Module Output Address Register

CAM_OUTADD

R

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							CAM	OUTA	DDR[3	1:16]						
Type								R/	W							
Reset		0														
Bit	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Name							CAM	_OUT/	ADDR[15:0]						
Type								R/	W							
Reset								()							

CAM_OUTADDR

Output memory address

6.7.1.2 Color Process Register Definition

CAM+00B8h Y Channel Configuration Register

CAM_YCHAN

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name												CONT	RAST_	GAIN		
Type										R/W						
Reset										40h						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Name	SIGN_ BRIG HT_O FFSE T	BRIGHT_OFFSET	VSUP _EN	UV_L P_EN	CSUP_EDGE_GAIN
Type	R/W	R/W	R/W	R/W	R/W
Reset	1	0	0	0	10h

CONTRAST_GAIN Y channel contrast gain value

SIGN_BRIGHT_OFFSET Sign bit of Y channel brightness offset value

BRIGHT_OFFSET Y channel brightness offset value **VSUP_EN** Vertical Edge color suppression enable

UV_LP_EN UV channel low pass enable

CSUP_EDGE_GAIN Chroma suppression edge gain value(1.3)

CAM+00BCh UV Channel Configuration Register

CAM_UVCHAN

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				U,	11							V	22			
Type				R/	W							R/	W			
Reset				20)h							20)h			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	SIGN_ U_OF FSET			U_	OFFSI	ΕT			SIGN_ V_OF FSET			V_	OFFSI	ĒΤ		
Туре	R/W				R/W				R/W				R/W			
Reset	0				0				0				0			

U11 Hue U channel operating valueV11 Hue V channel operating value

SIGN_U_OFFSET Sign bit of Hue U channel offset value

U_OFFSET Hue U channel offset value

SIGN_V_OFFSET Sign bit of Hue V channel offset value

V_OFFSET Hue V channel offset value

CAM+00C0h Space Convert YUV Register 1

CAM_SCONV1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
Name												Y_G	AIN					
Type												R/	W					
Reset								FFh										
Bit	15	14	13	12	11	10	9	8	8 7 6 5 4 3 2 1 0									
Name				U_G	AIN							V_G	AIN					
Type				R/	W							R/	W					
Reset				91	lh	•	•					B	3h		•			

Y_GAIN Space Convert Y channel gain value
U_GAIN Space Convert U channel gain value
V_GAIN Space Convert V channel gain value

CAM+00C4h Space Convert YUV Register 2

CAM_SCONV2

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
Name												Y_OF	FSET					
Type												R/	W					
Reset								01h										
Bit	15	14	13	12	11	10	9	8	8 7 6 5 4 3 2 1 0									
Name				U_OF	FSET							V_OF	FSET					
Type				R/	W							R/	W					
Reset				80)h		•			•		80)h		•			

Y_OFFSET Space Convert Y channel offset value
U_OFFSET Space Convert U channel offset value
V_OFFSET Space Convert V channel offset value

CAM+0128h Vertical Subsample Control Register

CAM_VSUB

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				V_SU B_EN						V_SL	JB_IN					
Type				R/W						R/	W					
Reset				0		0										
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										V_SUE	3_OUT					
Туре						RW										
Reset						0										

V_SUB_ENVertical sub-sample enableV_SUB_INSource vertical sizeV_SUB_OUTSub-sample vertical size

CAM+012ch Horizontal Subsample Control Register

CAM_HSUB

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				H_SU B_EN						H_SL	IB_IN					
Туре				R/W		R/W										
Reset				0		0										
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										H_SUE	3_OUT					
Type						R/W										
Reset						0										

H_SUB_EN Horizontal sub-sample enable **H_SUB_IN** Source horizontal size

H_SUB_OUT Sub-sample horizontal size

CAM+0174h Result Window Vertical Size Register

RWINV_SEL

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				RWIN _EN					F	RWINV_	STAR	Γ				
Type				R/W		RW										
Reset				0h		0h										
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										RWIN	/_END					
Type										R/	W					
Reset										0	h					

RWIN_EN Result window enable

RWINV_START Result window vertical start line Result window vertical end line

CAM+0178h Result Window Horizontal Size Register

RWINH_SEL

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name									F	HNIWS	_STAR	Γ				
Type					R/W											
Reset					0h											
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										RWINI	H_END					
Type										R	W					
Reset										C)h					

RWINH_START Result window horizontal start pixel **RWINH_END** Result window horizontal end pixel

CAM+0180h Camera Interface Debug Mode Control Register

CAM_DEBUG

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
Type																
Reset																

CAM+0184h Camera Module Debug Information Write Out Destination Address

CAM_DSTADD

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							D	ST_AD	D[31:1	6]						
Type								R/	W							
Reset		4000h														
Bit	15															
Name							D	ST_AL	D[15:0)]						
Type								R/	W							
Reset								000	00h							

DST_ADD

Debug Information Write Output Destination Address

CAM+0188h

Camera Module Debug Information Last Transfer Destination Address

CAM_	_LAS	FADD
------	------	-------------

R

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							LA	ST_AL	D[31:1	6]						
Type								R/	W							
Reset		0														
Bit	15															
Name							L	AST_A	DD[15:	0]						
Type								R/	W							
Reset		•		•		•	•	()		•	•				

LAST_ADD

Debug Information Last Transfer Destination Address

CAM+018Ch

Camera Module Frame Buffer Transfer Out Count Register

CAM_XFERCNT

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							XFE	R_COL	JNT [31	:1 6]						
Type								R	0							
Reset		0														
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Name							XFE	R_CO	UNT[1	5:0]						
Type								R	0							
Reset								()							

XFER_COUNT

Pixel Transfer Count per Frame

CAM+0190h Sensor Test Model Configuration Register 1

CAM_MDLCFG

•

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				VSY	NC						IDLE	_PIXEL	_PER_	LINE		

Type				R/	W							R/	W			
Reset				()							C)			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			LINEC HG_E N	GRAY _LEV _EL			ON	RST	STILL	PATT ERN	PIXEL	_SEL		CLK	_DIV	
Type	R/W R/W R							R/W	R/W	R/W	R/	W		R	/W	
Reset			0	0			0	0	0	0	()		•	0	

VSYNC high duration in line unit(IDLE_PIXEL_PER_LINE + PIXEL)

IDLE_PIXEL_PER_LINE HSYNC low duration in pixel unit LINECHG_EN Pattern 0 2 lines change mode enable

GRAY_LEVEL Sensor Model Gray Level Enable. When gray level is enable, increased gray level pattern

will

CAM +0194h

be generated.

ON Enable Sensor Model.

RST Reset Sensor Model

STILL Still picture Mode

PATTERN Sensor Model Test Pattern Selection
PIXEL_SEL Sensor Model output pixel selection.

00 All pixels01 01 pixel10 pixel

11 00 and 11 pixels

CLK_DIV Pixel_Clock/System_Clock Ratio

CAM_MDLCFG

2

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name											LINE						
Type											R/W						
Reset						0											
Bit	15	14	13	12	11	1 10 9 8 7 6 5 4 3 2 1 0											
Name											PIXEL						
Type											R/W						
Reset											0						

Sensor Test Model Configuration Register 2

LINE Sensor Model Line Number

PIXEL Sensor Model Pixel Number (HSYNC high duration in pixel unit)

CAM +01D8h CAM RESET Register

CAM_RESET

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name													TG	STAT	US	
Type														R		
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			ISP_F	RAME	COUN	IT[7:0]										ISP_ RES ET
Type				R	W											RW
Reset				()											0

ISP_FRAME_COUNT ISP frame counter

ISP_RESET ISP reset

CAM +01DCh TG STATUS Register

TG_STATUS

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				SYN_ VFON					LIN	E_COL	JNT[11	:0]				
Type				R	R											
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									PIXE	L_CO	UNT[11	l:0]				
Type										R						
Reset																

SYN_VFONTG view finder statusLINE_COUNTTG line counterPIXEL_COUNTTG pixel counter

CAM +0248h CAM GMC DEBUG Register

CAM_DEBUG

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
Type																
Reset																

CAM +0274h CAM VERSION Register

CAM_VERSION

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								YEAR	[16:0]							
Type								F	₹							
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				MONT	H[15:0]							DATE	[15:0]			
Type				F	₹						F	₹				
Reset																

YEAR Year ASCII
MONTH Month ASCII
DATE Date ASCII

7 Audio Front-End

7.1 General Description

The audio front-end essentially consists of voice and audio data paths. **Figure 69** shows the block diagram of the audio front-end. All voice band data paths comply with the GSM 03.50 specification. Mono hands-free audio or external FM radio playback paths are also provided. The audio stereo path facilitates CD-quality playback, external FM radio, and voice playback through a headset.

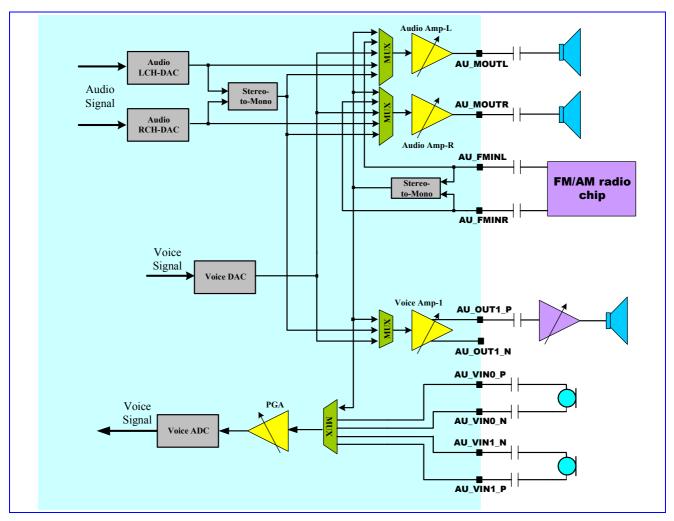


Figure 69 Block diagram of audio front-end

Figure 70 shows the digital circuits block diagram of the audio front-end. The APB register block is an APB peripheral that stores settings from the MCU. The DSP audio port block interfaces with the DSP for control and data communications. The digital filter block performs filter operations for voice band and audio band signal processing. The Digital Audio Interface (DAI) block communicates with the System Simulator for FTA or external Bluetooth modules.

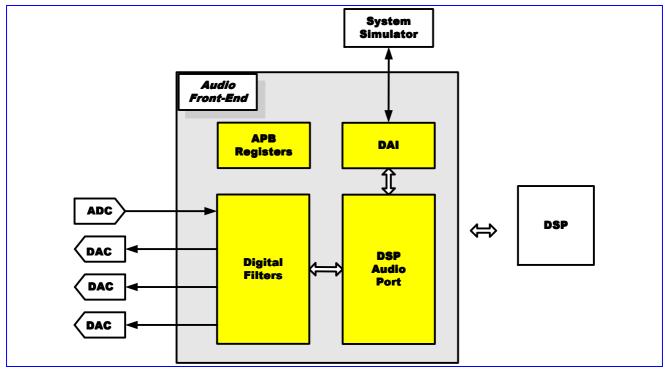
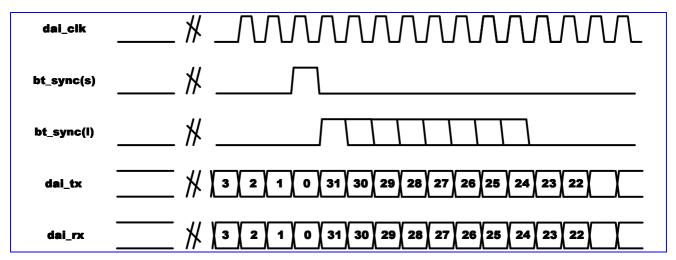
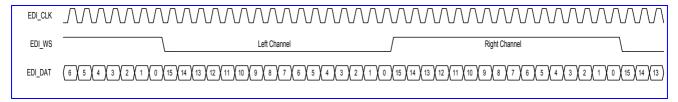


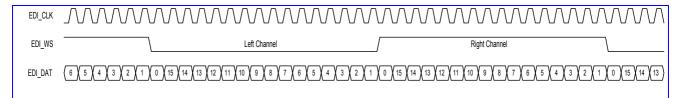
Figure 70 Block diagram of digital circuits of the audio front-end

To communicate with the external Bluetooth module, the master-mode PCM interface and master-mode I2S/EIAJ interface are supported. The clock of PCM interface is 256 KHz, and the frame sync is 8 KHz. Both long sync and short sync interfaces are supported. The PCM interface can transmit 16-bit stereo or 32-bit mono 8KHz sampling rate voice signal. **Figure 71** shows the timing diagram of the PCM interface. Note that the serial data changes when the clock is rising and is latched when the clock is falling.




Figure 71 Timing diagram of Bluetooth application

I2S/EIAJ interface is designed to transmit high quality audio data. **Figure 71** and **Figure 72** illustrate the timing diagram of the two types of interfaces. I2S/EIAJ can support 32KHz, 44.1KHz, and 48KHz sampling rate audio signals. The clock frequency of I2S/EIAJ can be 32×(sampling frequency), or 64×(sampling frequency). For example, to transmit a 44.1KHz CD-quality music, the clock frequency should be 32×44.1KHz = 1.4112MHz or 64×44.1KHz = 2.8224MHz.


I2S/EIAJ interface is not only used for Bluetooth module, but also for external DAC components. Audio data can easily be sent to the external DAC through the I2S/EIAJ interface.

In this document, the I2S/EIAJ interface is referred to as EDI (External DAC Interface).

Figure 72 EDI Format 1: EIAJ (FMT = 0).

Figure 73 EDI Format 2: I^2S (FMT = 1).

7.1.1 DAI, PCM and EDI Pin Sharing

DAI, PCM, and EDI interfaces share the same pins. The pin mapping is listed in **Table 45**.

PIN NAME	DAI	PCM	EDI
DAI_CLK (OUTPUT)	DAI_CLK	PCM_CLK	EDI_CLK
DAI_TX (OUTPUT)	DAI_TX	PCM_OUT	EDI_DAT
DAI_RX (INPUT)	DAI_RX	PCM_IN	
BT_SYNC (OUTPUT)	-	PCM_SYNC	EDI_WS

Table 45 Pin mapping of DAI, PCM, and EDI interfaces.

Beside the shared pins, the EDI interface can also use other dedicated pins. With the dedicated pins, PCM and EDI interfaces can operate at the same time.

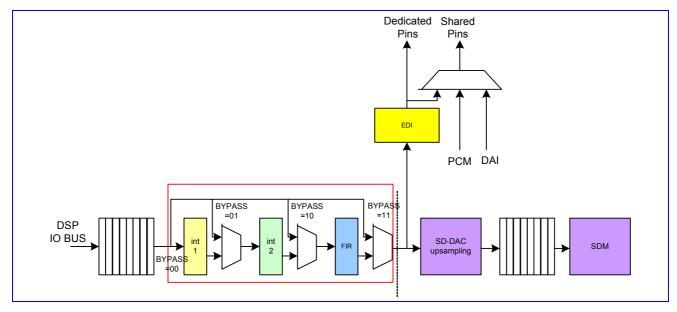


Figure 74 DAI, PCM, EDI interfaces

7.2 Register Definitions

MCU APB bus registers in audio front-end are listed as follows.

AFE+0000h AFE Voice MCU Control Register

AFE_VMCU_CO

N₀

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																VAFE ON
Type																R/W
Reset																0

MCU sets this register to start AFE voice operation. A synchronous reset signal is issued, then periodical interrupts of 8-KHz frequency are issued. Clearing this register stops the interrupt generation.

VAFEON Turn on audio front-end operations.

AFE+000Ch AFE Voice Analog-Circuit Control Register 1

AFE_VMCU_CO

N1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									VRSD ON							
Туре									R/W							
Reset									0							

Set this register for consistency of analog circuit setting. Suggested value is 80h.

VRSDON Turn on the voice-band redundant signed digit function.

0: 1-bit 2-level mode

1: 2-bit 3-level mode

AFE+0014h AFE Voice DAI Bluetooth Control Register

AFE_VDB_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										EDIO		PCMO	VBTS YNC	V	BTSLE	N
Туре										RW	ON R/W	R/W	R/W		R/W	
Reset										0	0	0	0		000	

Set this register for DAI test mode and Bluetooth application.

EDION EDI signals are selected as the output of DAI, PCM, EDI shared interface.

- **0** EDI is not selected. A dedicated EDI interface can be enabled by programming the GPIO selection. Please refer to GPIO section for details.
- 1 EDI is selected. VDAION and VBTON are not set.

VDAION Turn on the DAI function.

VBTON Turn on the Bluetooth PCM function.

VBTSYNCBluetooth PCM frame sync type

0: short

1: long

VBTSLEN Bluetooth PCM long frame sync length = VBTSLEN+1

AFE+0018h AFE Voice Look-Back mode Control Register AFE_VLB_CON Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name										VDEC INMO DE
Type							R/W	R/W	R/W	R/W
Reset							Q	0	0	0

Set this register for AFE voice digital circuit configuration control. Several loop back modes are implemented for test purposes. Default values correspond to the normal function mode.

VBYPASSIIR Bypass hardware IIR filters.

VDAPINMODE DSP audio port input mode control

- 0 Normal mode
- 1 Loop back mode

VINTINMODE interpolator input mode control

- 0 Normal mode
- 1 Loop back mode

VDECINMODE decimator input mode control

- 0 Normal mode
- 1 Loop back mode

AFE+0020h AFE Audio MCU Control Register 0

AFE_AMCU_CO

N₀

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																AAFE ON
Туре																R/W
Reset																0

MCU sets this register to start AFE audio operation. A synchronous reset signal is issued, then periodical interrupts of 1/6 sampling frequency are issued. Clearing this register stops the interrupt generation.

AFE+0024h AFE Audio Control Register 1

AFE_AMCU_CO

N1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		MON O	NEWS DM	IDWA	ВҮР	ASS		ADIT HON	ADITI	HVAL	ARAI	MPSP	AMUT ER	AMUT EL	AF	S
Type		R/W	R/W	R/W	R'	W		R/W	R/	W	R/	W	R/W	R/W	R/	W
Reset		0	1	1	0	0		0	0	0	0	0	0	0	0	0

MCU sets this register to inform hardware of the sampling frequency of audio being played back.

MONO Mono mode select. AFE HW will do (left + right) / 2 operation to the audio sample pair. Thus both right/left channel DAC will have the same inputs.

- O Disable modno mode.
- 1 Enable mono mode.

NEWSDM Select new 9-level SDM in audio DAC.

- Select old SDM.
- 1 Select new SDM.

IDWA Select IDWA algorithm in new audio DAC SDM. If choosing old SDM, this bit is neglected.

- Use no IDWA algorithm in analog part of DAC.
- Use IDWA algorithm in analog part of DAC.

BYPASS To bypass part of the audio hardware path.

- **00** No bypass. The input data rate is 1/4 sampling frequency. For example, if the sampling frequency is 32KHz, then the input data rate is 8KHz.
- **01** Bypass the first stage of interpolation. The input data rate is 1/2 the sampling frequency.
- **10** Bypass two stages of interpolation. The input data rate is the same as the sampling frequency.
- 11 Bypass two stages of interpolation and EQ filter. The input data rate is the same as the sampling frequency.

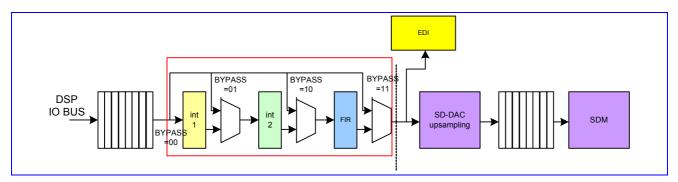


Figure 75 Block diagram of the audio path.

ADITHON Turn on the audio dither function.

ADITHVAL Dither scaling setting.

00 1/4

01 1/2

10 1

11 2

ARAMPSP ramp up/down speed selection

00 8, 4096/AFS

01 16, 2048/AFS

10 24, 1024/AFS

11 32, 512/AFS

AMUTER Mute the audio R-channel, with a soft ramp up/down.

AMUTEL Mute the audio L-channel, with a soft ramp up/down.

AFS Sampling frequency setting.

00 32-KHz

01 44.1-KHz

10 48-KHz

11 reserved

AFE+0028h AFE EDI Control Register

AFE EDI CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								DIR	SRC	WCYCLE					FMT	EN
Type								R/W	R/W	R/W					R/W	R/W
Reset								0	0	01111					0	0

This register is used to control the EDI

EN Enable EDI. When EDI is disabled, EDI_DAT and EDI_WS hold low.

0 disable EDI

1 enable EDI

FMT EDI format

- O EIAJ
- **1** I2S

WCYCLE Clock cycle count in a word. Cycle count = WCYCLE + 1, and WCYCLE can be 15 or 31 only. Any other values result in an unpredictable error.

- **15** Cycle count is 16.
- 31 Cycle count is 32.

SRC I2S clock and WS signal source.

- **0** Internal mode. The clock and word select signals are fed to external device from AFE.
- 1 External mode. The clock and word select signals are fed externally from the connected device. There is a buffer control mechanism to deal with the clock mismatch between internal and external clocks.

DIR Serial data bit direction

- **0** Output mode. Audio data is fed out to the external device.
- 1 Input mode or recording mode. By this recording mechanism, DSP can do some post processing or voice memos.

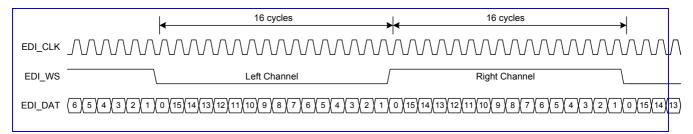


Figure 76 Cycle count is 16 for I2S format.

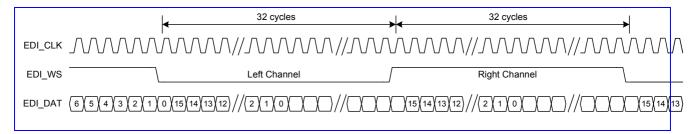


Figure 77 Cycle count is 32 for I2S format.

AFE+0030h Audio/Voice DAC SineWave Generator

AFE_DAC_TES

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	VON	AON	MUTE			A	MP_DI	V				FREC	_DIV			
Type	R/W	R/W	R/W				R/W					R/	W			
Reset	0	0	0			•	111	•			•	0000	0001	•	•	-

This register is only for analog design verification on audio/voice DACs.

VON Makes voice DAC output the test sine wave.

- Voice DAC inputs are normal voice samples
- 1 Voice DAC inputs are sine waves

AON Makes audio DAC output the test sine wave.

- Audio DAC inputs are normal audio samples
- 1 Audio DAC inputs are sine waves

MUTE Mute switch.

- **0** Turn on the sine wave output in this test mode.
- 1 Mute the sine wave output.

AMP_DIV Amplitude setting.

FREQ_DIV Frequency setting.

AFE+0034h **Audio/Voice Interactive Mode Setting**

AFE VAM SET

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2 1 0 PER_VAL			
Name	A2V																
Type	R/W													R/W			
Reset	0													101			

A₂V

Redirect audio interrupt to voice interrupt. In other words, replace voice interrupt by audio interrupt.

- [voice interrupt / audio interrupt] → [voice / audio]
- [audio interrupt / no interrupt] → [voice / audio]

PER VAL Counter reset value for audio interrupt generation period setting. For example, by default, the setting = 5 causes interrupt per 6 L/R samples. Changing this value can change the rate of audio interrupt.

AFE+0040h~0 0F0h

AFE Audio Equalizer Filter Coefficient Register

AFE EQCOEF

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									4							
Type								W	0							

Audio front-end provides a 45-tap equalizer filter. The filter is shown below.

 $DO = (A44 \times DI44 + A43 \times DI43 \dots + A1 \times DI1 + A0 \times DI0)/32768.$

DIn is the input data, and An is the coefficient of the filter, which is a 16-bit 2's complement signed integer. DI0 is the last input data.

The coefficient cannot be programmed when the audio path is enabled, or unpredictable noise may be generated. If coefficient programming is necessary while the audio path is enabled, the audio path must be muted during programming. After programming is complete, the audio path is not to be resumed (unmated) for 100 sampling periods.

Coefficient of the filter.

Programming Guide 7.3

Several cases - including speech call, voice memo record, voice memo playback, melody playback and DAI tests requires that partial or the whole audio front-end be turned on.

The following are the recommended voice band path programming procedures to turn on audio front-end:

- 1. MCU programs the AFE DAI CON, AFE LB CON, AFE VAG CON, AFE VAC CON0, AFE VAC CON1 and AFE VAPDN CON registers for specific operation modes. Refer also to the analog chip interface specification.
- 2. MCU clears the VAFE bit of the PDN_CON2 register to ungate the clock for the voice band path. Refer to the software power down control specification.
- 3. MCU sets AFE_VMCU_CON to start operation of the voice band path.

The following are the recommended voice band path programming procedures to turn off audio front-end:

- 1. MCU programs AFE VAPDN CON to power down the voice band path analog blocks.
- 2. MCU clears AFE VMCU CON to stop operation of the voice band path.
- 3. MCU sets VAFE bit of PDN CON2 register to gate the clock for the voice band path.

To start the DAI test, the MS first receives a GSM Layer 3 TEST_INTERFACE message from the SS and puts the speech transcoder into one of the following modes:

- Normal mode (VDAIMODE[1:0]: 00)
- Test of speech encoder/DTX functions (VDAIMODE[1:0]: 10)
- Test of speech decoder/DTX functions (VDAIMODE[1:0]: 01)
- Test of acoustic devices and A/D & D/A (VDAIMODE[1:0]: 11)

The MS then waits for DAIRST# signaling from the SS. Recognizing this, DSP starts to transmit to and/or receive from the DSP. For further details, refer to the GSM 11.10 specification.

The following are the recommended audio band path programming procedures to turn on audio front-end:

- 1. MCU programs the AFE_MCU_CON1, AFE_AAG_CON, AFE_AAC_CON, and AFE_AAPDN_CON registers for specific configurations. Refer also to the analog chip interface specification.
- 2. MCU clears the AAFE bit of the PDN_CON2 register to ungate the clock for the audio band path. Refer to the software power down control specification.
- 3. MCU sets AFE_AMCU_CON0 to start operation of the audio band path.

The following are the recommended audio band path programming procedures to turn off audio front-end:

- 1. MCU programs the AFE_AAPDN_CON to power down the audio band path analog blocks. Refer also to the analog block specification for further details.
- 2. MCU clears AFE_AMCU_CON0 to stop operation of the audio band path.
 - 3. MCU sets the AAFE bit of the PDN CON2 register to gate the clock for the audio band path.

8 Radio Interface Control

This chapter details the MT6225 interface control with the radio part of a GSM terminal. Providing a comprehensive control scheme, the MT6225 radio interface consists of Baseband Serial Interface (BSI), Baseband Parallel Interface (BPI), Automatic Power Control (APC) and Automatic Frequency Control (AFC), together with APC-DAC and AFC-DAC.

8.1 Baseband Serial Interface

The Baseband Serial Interface controls external radio components. A 3-wire serial bus transfers data to RF circuitry for PLL frequency change, reception gain setting, and other radio control purposes. In this unit, BSI data registers are double-buffered in the same way as the TDMA event registers. The user writes data into the write buffer and the data is transferred from the write buffer to the active buffer when a TDMA_EVTVAL signal (from the TDMA timer) is pulsed.

Each data register BSI_Dn_DAT is associated with one data control register BSI_Dn_CON, where n denotes the index. Each data control register identifies which events (signaled by TDMA_BSISTRn, generated by the TDMA timer) trigger the download process of the word in register BSI_Dn_DAT. The word and its length (in bits) is downloaded via the serial bus. A special event is triggered when the IMOD flag is set to 1: it provides immediate download process without software programming the TDMA timer.

If more than one data word is to be downloaded on the same BSI event, the word with the lowest address among them is downloaded first, followed by the next lowest and so on.

The total download time depends on the word length, the number of words to download, and the clock rates. The programmer must space the successive event to provide enough time. If the download process of the previous event is not complete before a new event arrives, the latter is suppressed.

The unit has four output pins: BSI_CLK is the output clock, BSI_DATA is the serial data port, and BSI_CS0 and BSI_CS1 are the select pins for 2 external components. BSI_CS1 is multiplexed with another function. Please refer to GPIO table for more detail.

In order to support bi-directional read and write operations of the RF chip, software can directly write values to BSI_CLK, BSI_DATA and BSI_CS by programming the BSI_DOUT register. Data from the RF chip can be read by software via the register BSI_DIN. If the RF chip interface is a 3-wire interface, then BSI_DATA is bi-directional. Before software can program the 3-wire behavior, the BSI_IO_CON register must be set. An additional signal path from GPIO accommodates RF chips with a 4-wire interface.

The block diagram of the BSI unit is as depicted in Figure 78.

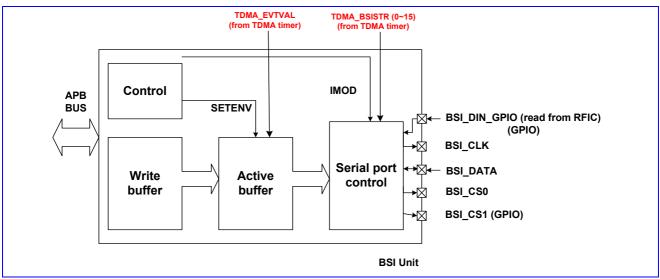


Figure 78 Block diagram of BSI unit.

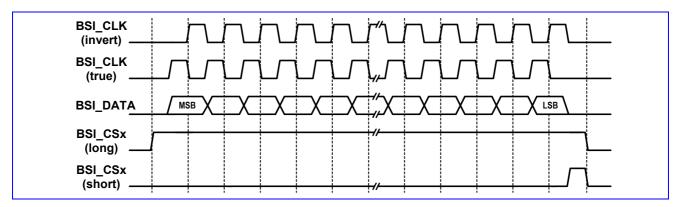


Figure 79 Timing characteristic of BSI interface.

8.1.1 Register Definitions

BSI+0000h	BSI control register

BSI_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								SETE NV	EN1_ POL	EN1_ LEN	EN0_ POL	EN0_ LEN	IMOD	CLK_SPD		CLK_ POL
Type								R/W	R/W	R/W	R/W	R/W	WO	R/W		R/W
Reset								0	0	0	0	0	N/A	0		0

This register is the control register for the BSI unit. The register controls the signal type of the 3-wire interface.

CLK_POL Controls the polarity of BSI CLK. Refer to Figure 79.

- 0 True clock polarity
- 1 Inverted clock polarity

CLK_SPD Defines the clock rate of BSI_CLK. The 3-wire interface provides 4 choices of data bit rate. The default is 13/2 MHz.

- **00** 13/2 MHz
- **01** 13/4 MHz
- **10** 13/6 MHz
- **11** 13/8 MHz

IMOD Enables immediate mode. If the user writes 1 to the flag, the download is triggered immediately without waiting for the timer events. The words for which the register event ID equals 1Fh are downloaded

following this signal. This flag is write-only. The immediate write is exercised only once: the programmer must write the flag again to invoke another immediate download. Setting the flag does not disable the other events from the timer; the programmer can disable all events by setting BSI ENA to all zeros.

ENX_LEN Controls the type of signals BSI_CS0 and BSI_CS1. Refer to Figure 78.

- 0 Long enable pulse
- 1 Short enable pulse

ENX_POL Controls the polarity of signals BSI_CS0 and BSI_CS1.

- True enable pulse polarity
- 1 Inverted enable pulse polarity

SETENV Enables the write operation of the active buffer.

- The user writes to the write buffer. The data is then latched in the active buffer after TDMA_EVTVAL is pulsed.
- 1 The user writes data directly to the active buffer.

BSI+0004h Control part of data register 0

BSI_D0_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name	ISB					LEN						EVT_ID					
Type	R/W					R/W								R/W			

This register is the control part of the data register 0. The register determines the required length of the download data word, the event to trigger the download process of the word, and the targeted device.

Table 47 lists the 27 data registers of this type. Multiple data control registers may contain the same event ID: the data words of all registers with the same event ID are downloaded when the event occurs.

EVT ID Stores the event ID for which the data word awaits to be downloaded.

00000~01111 Synchronous download of the word with the selected EVT_ID event. The relationship between this field and the event is listed as **Table 46.**

Event ID (in binary) – EVT_ID	Event name
00000	TDMA_BSISTR0
00001	TDMA_BSISTR1
00010	TDMA_BSISTR2
00011	TDMA_BSISTR3
00100	TDMA_BSISTR4
00101	TDMA_BSISTR5
00110	TDMA_BSISTR6
00111	TDMA_BSISTR7
01000	TDMA_BSISTR8
01001	TDMA_BSISTR9
01010	TDMA_BSISTR10
01011	TDMA_BSISTR11
01100	TDMA_BSISTR12
01101	TDMA_BSISTR13
01110	TDMA_BSISTR14
01111	TDMA_BSISTR15

Table 46 The relationship between the value of EVT_ID field in the BSI control registers and the TDMA_BSISTR events.

10000~11110Reserved

11111 Immediate download

LEN Stores the length of the data word. The actual length is defined as LEN + 1 (in bits). The value ranges from 0 to 31, corresponding to 1 to 32 bits in length.

ISB The flag selects the target device.

- **0** Device 0 is selected.
- 1 Device 1 is selected.

BSI +0008h Data part of data register 0

BSI_D0_DAT

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		DAT [31:16]														
Type		RW														
Bit	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Name		DAT [15:0]														
Type	RW															

This register is the data part of the data register 0. The legal length of the data is up to 32 bits. The actual number of bits to be transmitted is specified in LEN field in the BSI_D0_CON register.

DAT The field signifies the data part of the data register.

Table 47 lists the address mapping and function of the 27 pairs of data registers.

Register Address	Register Function	Acronym
BSI +0004h	Control part of data register 0	BSI_D0_CON
BSI +0008h	Data part of data register 0	BSI_D0_DAT
BSI +000Ch	Control part of data register 1	BSI_D1_CON
BSI +0010h	Data part of data register 1	BSI_D1_ DAT
BSI +0014h	Control part of data register 2	BSI_D2_CON
BSI +0018h	Data part of data register 2	BSI_D2_ DAT
BSI +001Ch	Control part of data register 3	BSI_D3_CON
BSI +0020h	Data part of data register 3	BSI_D3_ DAT
BSI +0024h	Control part of data register 4	BSI_D4_CON
BSI +0028h	Data part of data register 4	BSI_D4_ DAT
BSI +002Ch	Control part of data register 5	BSI_D5_CON
BSI +0030h	Data part of data register 5	BSI_D5_ DAT
BSI +0034h	Control part of data register 6	BSI_D6_CON
BSI +0038h	Data part of data register 6	BSI_D6_ DAT
BSI +003Ch	Control part of data register 7	BSI_D7_CON
BSI +0040h	Data part of data register 7	BSI_D7_ DAT
BSI +0044h	Control part of data register 8	BSI_D8_CON
BSI +0048h	Data part of data register 8	BSI_D8_ DAT
BSI +004Ch	Control part of data register 9	BSI_D9_CON
BSI +0050h	Data part of data register 9	BSI_D9_ DAT
BSI +0054h	Control part of data register 10	BSI_D10_CON
BSI +0058h	Data part of data register 10	BSI_D10_ DATA
BSI +005Ch	Control part of data register 11	BSI_D11_CON
BSI +0060h	Data part of data register 11	BSI_D11_ DAT
BSI +0064h	Control part of data register 12	BSI_D12_CON
BSI +0068h	Data part of data register 12	BSI_D12_ DAT

BSI +006Ch Control part of data register 13 BSI +0070h Data part of data register 13 BSI +0074h Control part of data register 14 BSI +0078h Data part of data register 14	BSI_D13_CON BSI_D13_ DAT BSI_D14_CON BSI_D14_ DAT
BSI +0074h Control part of data register 14	BSI_D14_CON
1 0	
BSI +0078h Data part of data register 14	BSI_D14_ DAT
Data part of data register 11	
BSI +007Ch Control part of data register 15	BSI_D15_CON
BSI +0080h Data part of data register 15	BSI_D15_ DAT
BSI +0084h Control part of data register 16	BSI_D16_CON
BSI +0088h Data part of data register 16	BSI_D16_ DAT
BSI +008Ch Control part of data register 17	BSI_D17_CON
BSI +0090h Data part of data register 17	BSI_D17_ DAT
BSI +0094h Control part of data register 18	BSI_D18_CON
BSI +0098h Data part of data register 18	BSI_D18_ DAT
BSI +009Ch Control part of data register 19	BSI_D19_CON
BSI +00A0h Data part of data register 19	BSI_D19_ DAT
BSI +00A4h Control part of data register 20	BSI_D20_CON
BSI +00A8h Data part of data register 20	BSI_D20_ DAT
BSI +00ACh Control part of data register 21	BSI_D21_CON
BSI +00B0h Data part of data register 21	BSI_D21_ DAT
BSI +00B4h Control part of data register 22	BSI_D22_CON
BSI +00B8h Data part of data register 22	BSI_D22_ DAT
BSI +00BCh Control part of data register 23	BSI_D23_CON
BSI +00C0h Data part of data register 23	BSI_D23_ DAT
BSI +00C4h Control part of data register 24	BSI_D24_CON
BSI +00C8h Data part of data register 24	BSI_D24_ DAT
BSI +00CCh Control part of data register 25	BSI_D25_CON
BSI +00D0h Data part of data register 25	BSI_D25_ DAT
BSI +00D4h Control part of data register 26	BSI_D26_CON
BSI +00D8h Data part of data register 26	BSI_D26_ DAT

Table 47 BSI data registers

BSI +0190h BSI event enable register

BSI_ENA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	BSI15	BSI14	BSI13	BSI12	BSI11	BSI10	BSI9	BSI8	BSI7	BSI6	BSI5	BSI4	BSI3	BSI2	BSI1	BSI0
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

This register enables an event by setting the corresponding bit. After a hardware reset, all bits are initialized to 1. These bits are also set to 1 after TDMA_EVTVAL pulse.

BSIx Enables downloading of the words corresponding to the events signaled by TMDA_BSI.

- **0** The event is not enabled.
- 1 The event is enabled.

BSI +0194h BSI IO mode control register

BSI_IO_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Manaa													SEL	4 WI	DAT	MOD
Name													CS1	ĒΕ	DIR	E

Type	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

MODE Defines the source of BSI signal.

- **0** BSI signal is generated by the hardware.
- 1 BSI signal is generated by the software. In this mode, the BSI clock depends on the value of the field DOUT.CLK. BSI_CS depends on the value of the field DOUT.CS and BSI_DATA depends on the value of the field DOUT.DATA.

DAT DIR Defines the direction of BSI DATA.

- **O** BSI DATA is configured as input. The 3-wire interface is used and BSI DATA is bi-directional.
- 1 BSI_DATA is configured as output.

4_WIRE Defines the BSI DIN source.

- The 3-wire interface is used and BSI_DATA is bi-directional. BSI_DIN comes from the same pin as BSI_DATA.
- 1 The 4-wire interface is used. Another pin (GPIO) is used as BSI DIN.

SEL_CS1 Defines which of the BSI_CSx (BSI_CS0 or BSI_CS1) is written by the software.

- **0** BSI CS0 is selected.
- 1 BSI CS1 is selected.

BSI +0198h Software-programmed data out

BSI_DOUT

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														DATA	CS	CLK
Type	R/W	W	W	W												
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLK Signifies the BSI CLK signal.

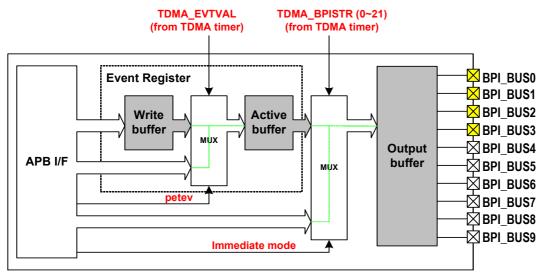
CS Signifies the BSI CS signal.

DATA Signifies the BSI DATA signal.

BSI +019ch Input data from RF chip

BSI DIN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																DIN
Type	R/W	R														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0


DIN Registers the input value of BSI_DATA from the RF chip.

8.2 Baseband Parallel Interface

8.2.1 General Description

The Baseband Parallel Interface features 10 control pins, which are used for timing-critical external circuits. These pins typically control front-end components which must be turned on or off at specific times during GSM operation, such as transmit-enable, band switching, TR-switch, etc.

- ★ The driving capability is configurable.

Figure 80 Block diagram of BPI interface

The user can program 26 sets of 10-bit registers to set the output value of BPI_BUS0~BPI_BUS9. The data is stored in the write buffers. The write buffers are then forwarded to the active buffers when the TDMA_EVTVAL signal is pulsed, usually once per frame. Each of the 26 write buffers corresponds to an active buffer, as well as to a TDMA event.

Each TDMA_BPISTR event triggers the transfer of data in the corresponding active buffer to the output buffer, thus changing the value of the BPI bus. The user can disable the events by programming the enable registers in the TDMA timer. If the TDMA_BPISTR event is disabled, the corresponding signal TDMA_BPISTR is not pulsed, and the value on the BPI bus remains unchanged.

For applications in which BPI signals serve as the switch, current-driving components are typically added to enhance driving capability. Four configurable output pins provide current up to 8 mA, and help reduce the number of external components. The output pins BPI_BUS6, BPI_BUS7, BPI_BUS8, and BPI_BUS9 are multiplexed with GPIO. Please refer to the GPIO table for more detailed information.

8.2.2 Register Definitions

BPI+0000h BPI control register BPI_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												PINM 3	PINM 2	PINM 1	PINM 0	PETE V
Type												WO	WO	WO	WO	R/W
Reset												0	0	0	0	0

This register is the control register of the BPI unit. The register controls the direct access mode of the active buffer and the current driving capability for the output pins.

The driving capabilities of BPI_BUS0, BPI_BUS1, BPI_BUS2, and BPI_BUS3 can be 2 mA or 8 mA, determined by the value of PINM0, PINM1, PINM2, and PINM3, respectively. These output pins provide a higher driving capability and save on external current-driving components. In addition to the configurable pins, pins BPI_BUS4 to BPI_BUS9 provide a driving capability of 2 mA (fixed).

PETEV Enables direct access to the active buffer.

- The user writes data to the write buffer. The data is latched in the active buffer after the TDMA EVTVAL signal is pulsed.
- 1 The user directly writes data to the active buffer without waiting for the TDMA EVTVAL signal.

PINMO Controls the driving capability of BPI BUSO.

- The output driving capability is 2mA.
- 1 The output driving capability is 8mA.

PINM1 Controls the driving capability of BPI BUS1.

- The output driving capability is 2mA.
- 1 The output driving capability is 8mA.

PINM2 Controls the driving capability of BPI BUS2.

- The output driving capability is 2mA.
- 1 The output driving capability is 8mA.

PINM3 Controls the driving capability of BPI BUS3.

- **0** The output driving capability is 2mA.
- 1 The output driving capability is 8mA.

BPI +0004h BPI data register 0

BPI BUF0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							PO9	PO8	PO7	PO6	PO5	PO4	PO3	PO2	PO1	PO0
Type							R/W									

This register defines the BPI signals that are associated with the event TDMA BPI0.

Table 48 lists 26 registers of the same structure, each of which is associated with one specific event signal from the TDMA timer. The data registers are all double-buffered. When PETEV is set to 0, the data register links to the write buffer. When PETEV is set to 1, the data register links to the active buffer.

One register, BPI_BUFI, is dedicated for use in immediate mode. Writing a value to that register effects an immediate change in the corresponding BPI signal and bus.

POx This flag defines the corresponding signals for BPIx after the TDMA event 0 takes place. The overall data register definition is listed in **Table 48.**

Register Address	Register Function	Acronym
BPI +0004h	BPI pin data for event TDMA_BPI 0	BPI_BUF0
BPI +0008h	BPI pin data for event TDMA_BPI 1	BPI_BUF1
BPI +000Ch	BPI pin data for event TDMA_BPI 2	BPI_BUF2
BPI +0010h	BPI pin data for event TDMA_BPI 3	BPI_BUF3
BPI +0014h	BPI pin data for event TDMA_BPI 4	BPI_BUF4
BPI +0018h	BPI pin data for event TDMA_BPI 5	BPI_BUF5
BPI +001Ch	BPI pin data for event TDMA_BPI 6	BPI_BUF6
BPI +0020h	BPI pin data for event TDMA_BPI 7	BPI_BUF7
BPI +0024h	BPI pin data for event TDMA_BPI 8	BPI_BUF8
BPI +0028h	BPI pin data for event TDMA_BPI 9	BPI_BUF9
BPI +002Ch	BPI pin data for event TDMA_BPI 10	BPI_BUF10
BPI +0030h	BPI pin data for event TDMA_BPI 11	BPI_BUF11
BPI +0034h	BPI pin data for event TDMA_BPI 12	BPI_BUF12
BPI +0038h	BPI pin data for event TDMA_BPI 13	BPI_BUF13
BPI +003Ch	BPI pin data for event TDMA_BPI 14	BPI_BUF14
BPI +0040h	BPI pin data for event TDMA_BPI 15	BPI_BUF15

	<u> </u>	
BPI +0044h	BPI pin data for event TDMA_BPI 16	BPI_BUF16
BPI +0048h	BPI pin data for event TDMA_BPI 17	BPI_BUF17
BPI +004Ch	BPI pin data for event TDMA_BPI 18	BPI_BUF18
BPI +0050h	BPI pin data for event TDMA_BPI 19	BPI_BUF19
BPI +0054h	BPI pin data for event TDMA_BPI 20	BPI_BUF20
BPI +0058h	BPI pin data for event TDMA_BPI 21	BPI_BUF21
BPI +005Ch	BPI pin data for event TDMA_BPI 22	BPI_BUF22
BPI +0060h	BPI pin data for event TDMA_BPI 23	BPI_BUF23
BPI +0064h	BPI pin data for event TDMA_BPI 24	BPI_BUF24
BPI +0068h	BPI pin data for event TDMA_BPI 25	BPI_BUF25
BPI +0090h	BPI pin data for immediate mode	BPI_BUFI

Table 48 **BPI Data Registers.**

BPI +0094h BPI event enable register 0

BPI_ENA0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	BEN15	BEN14	BEN13	BEN12	BEN11	BEN10	BEN9	BEN8	BEN7	BEN6	BEN5	BEN4	BEN3	BEN2	BEN1	BEN0
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

This register enables the events that are signaled by the TDMA timer: by clearing a register bit, the corresponding event signal is ignored. After a hardware reset, all the enable bits default to 1 (enabled). Upon receiving a TDMA_EVTVAL pulse, all register bits are also set to 1 (enabled).

BENn This flag indicates whether event n signals are heeded or ignored.

- Event n is disabled (ignored).
- 1 Event n is enabled.

BPI+0098h BPI event enable register 1

BPI_ENA1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							BEN25	BEN24	BEN23	BEN22	BEN21	BEN20	BEN19	BEN18	BEN17	BEN16
Type							R/W									
Reset							0	0	0	0	0	0	0	0	0	0

This register enables the events that are signaled by the TDMA timing generator: by clearing a register bit, the corresponding event signal is ignored. After a hardware reset, all the enable bits default to 1 (enabled). Upon receiving the TDMA_EVTVAL pulse, all register bits are also set to 1 (enabled).

BENn This flag indicates whether event n signals are heeded or ignored.

- Event n is disabled (ignored).
- 1 Event n is enabled.

8.3 Automatic Power Control (APC) Unit

8.3.1 General Description

The Automatic Power Control (APC) unit controls the Power Amplifier (PA) module. Through APC unit, the proper transmit power level of the handset can be set to ensure that burst power ramping requirements are met. In one TDMA frame, up to 7 TDMA events can be enabled to support multi-slot transmission. In practice, 5 banks of ramp profiles are used in one frame to make up 4 consecutive transmission slots.

The shape and magnitude of the ramp profiles are configurable to fit ramp-up (ramp up from zero), intermediate ramp (ramp between transmission windows), and ramp-down (ramp down to zero) profiles. Each bank of the ramp profile consists of 16 8-bit unsigned values, which are adjustable for different conditions.

The entries from one bank of the ramp profile are partitioned into two parts, with 8 values in each half. In normal operation, the entries in the left half are multiplied by a 10-bit left scaling factor, and the entries in the right half are multiplied by a 10-bit right scaling factor. The values are then truncated to form 16 10-bit intermediate values. Finally the intermediate ramp profile are linearly interpolated into 32 10-bit values and sequentially used to update the D/A converter. The block diagram of the APC unit is shown in Figure 81.

The APB bus interface is 32 bits wide. Four write accesses are required to program each bank of ramp profile. The detailed register allocations are listed in Table 49.

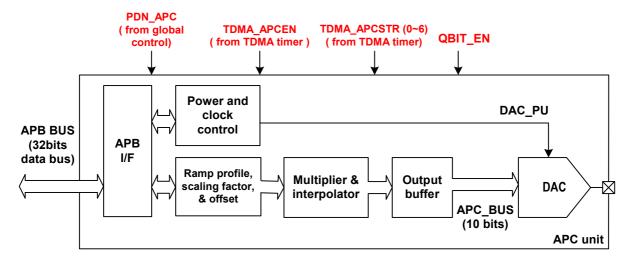


Figure 81 Block diagram of APC unit.

Register Definitions 8.3.2

APC+0000h APC 1st ramp profile #0

APC_PFA0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				EN	T3							EN	IT2			
Type				R/	W							R/	W			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				EN	T1							EN	IT0			
Type	R/W											R/	W			

The register stores the first four entries of the first power ramp profile. The first entry resides in the least significant byte [7:0], the second entry in the second byte [15:8], the third entry in the third byte [23:16], and the fourth in the most significant byte [31:24]. Since this register provides no hardware reset, the programmer must configure it before any APC event takes place.

The field signifies the 4th entry of the 1st ramp profile. ENT3 The field signifies the 3rd entry of the 1st ramp profile. ENT2 The field signifies the 2nd entry of the 1st ramp profile. ENT₁ ENT₀ The field signifies the 1st entry of the 1st ramp profile. The overall ramp profile register definition is listed in **Table 49.**

Register Address	Register Function	Acronym
APC +0000h	APC 1 st ramp profile #0	APC PFA0

APC +0008h	APC 1 st ramp profile #2	APC_PFA2
APC +000Ch	APC 1 st ramp profile #3	APC_PFA3
APC +0020h	APC 2 nd ramp profile #0	APC_PFB0
APC +0024h	APC 2 nd ramp profile #1	APC_PFB1
APC +0028h	APC 2 nd ramp profile #2	APC_PFB2
APC +002Ch	APC 2 nd ramp profile #3	APC_PFB3
APC +0040h	APC 3 rd ramp profile #0	APC_PFC0
APC +0044h	APC 3 rd ramp profile #1	APC_PFC1
APC +0048h	APC 3 rd ramp profile #2	APC_PFC2
APC +004Ch	APC 3 rd ramp profile #3	APC_PFC3
APC +0060h	APC 4 th ramp profile #0	APC_PFD0
APC +0064h	APC 4 th ramp profile #1	APC_PFD1
APC +0068h	APC 4 th ramp profile #2	APC_PFD2
APC +006Ch	APC 4 th ramp profile #3	APC_PFD3
APC +0080h	APC 5 th ramp profile #0	APC_PFE0
APC +0084h	APC 5 th ramp profile #1	APC_PFE1
APC +0088h	APC 5 th ramp profile #2	APC_PFE2
APC +008Ch	APC 5 th ramp profile #3	APC_PFE3
APC +00A0h	APC 6 th ramp profile #0	APC_PFF0
APC +00A4h	APC 6 th ramp profile #1	APC_PFF1
APC +00A8h	APC 6 th ramp profile #2	APC_PFF2
APC +00ACh	APC 6 th ramp profile #3	APC_PFF3
APC +00C0h	APC 7 th ramp profile #0	APC_PFG0
APC +00C4h	APC 7 th ramp profile #1	APC_PFG1
APC +00C8h	APC 7 th ramp profile #2	APC_PFG2
APC +00CCh	APC 7 th ramp profile #3	APC_PFG3
APC +00CCh	APC 7 th ramp profile #3	APC_PFG3

Table 49 APC ramp profile registers

APC +0010h APC 1st ramp profile left scaling factor

APC SCALOL

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Name							SF											
Type							RW											
Reset							1_0000_0000											

The register stores the left scaling factor of the 1^{st} ramp profile. This factor multiplies the first 8 entries of the 1^{st} ramp profile to provide the scaled profile, which is then interpolated to control the D/A converter.

After a hardware reset, the initial value of the register is 256. In this case, no scaling is done (each entry of the ramp profile is multiplied by 1), because the 8 least significant bits are truncated after multiplication.

The overall scaling factor register definition is listed in Table 50.

SF Scaling factor. After a hardware reset, the value is 256.

APC +0014h APC 1st ramp profile right scaling factor

APC_SCALOR

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Name							SF											
Type							R/W											
Reset							1_0000_0000											

The register stores the right scaling factor of the 1^{st} ramp profile. This factor multiplies the last 8 entries of the 1^{st} ramp profile to provide the scaled profile, which is then interpolated to control the D/A converter.

After a hardware reset, the initial value of the register is 256. In this case, no scaling is done (each entry of the ramp profile is multiplied by 1), because the 8 least significant bits are truncated after multiplication.

The overall scaling factor register definition is listed in Table 50.

SF Scaling factor. After a hardware reset, the value is 256.

APC+0018h APC 1st ramp profile offset value

APC_OFFSET0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Name							OFFSET											
Type							RW											
Reset							0											

There are 7 offset values for the corresponding ramp profile.

The 1st offset value also serves as the pedestal value. The value is used to power up the APC D/A converter before the RF signals start to transmit. The D/A converter is then biased on the value, to provide the initial control voltage for the external control loop. The exact value depends on the characteristics of the external components. The timing to output the pedestal value is configurable through the TDMA_BULCON2 register of the timing generator; its valid range is 0~127 quarter-bits of time after the baseband D/A converter is powered up.

OFFSET Offset value for the corresponding ramp profile. After a hardware reset, the default value is 0. The overall offset register definition is listed in **Table 50**.

Register Address	Register Function	Acronym
APC +0010h	APC 1 st ramp profile left scaling factor	APC_SCAL0L
APC +0014h	APC 1 st ramp profile right scaling factor	APC_SCAL0R
APC +0018h	APC 1 st ramp profile offset value	APC_OFFSET0
APC +0030h	APC 2 nd ramp profile left scaling factor	APC_SCAL1L
APC +0034h	APC 2 nd ramp profile right scaling factor	APC_SCAL1R
APC +0038h	APC 2 nd ramp profile offset value	APC_OFFSET1
APC +0050h	APC 3 rd ramp profile left scaling factor	APC_SCAL2L
APC +0054h	APC 3 rd ramp profile right scaling factor	APC_SCAL2R
APC +0058h	APC 3 rd ramp profile offset value	APC_OFFSET2
APC +0070h	APC 4 th ramp profile left scaling factor	APC_SCAL3L
APC +0074h	APC 4 th ramp profile right scaling factor	APC_SCAL3R
APC +0078h	APC 4 th ramp profile offset value	APC_OFFSET3
APC +0090h	APC 5 th ramp profile left scaling factor	APC_SCAL4L
APC +0094h	APC 5 th ramp profile right scaling factor	APC_SCAL4R
APC +0098h	APC 5 th ramp profile offset value	APC_OFFSET4
APC +00B0h	APC 6 th ramp profile left scaling factor	APC_SCAL5L
APC +00B4h	APC 6 th ramp profile right scaling factor	APC_SCAL5R
APC +00B8h	APC 6 th ramp profile offset value	APC_OFFSET5
APC +00D0h	APC 7 th ramp profile left scaling factor	APC_SCAL6L
APC +00D4h	APC 7 th ramp profile right scaling factor	APC_SCAL6R
APC +00D8h	APC 7 th ramp profile offset value	APC_OFFSET6

Table 50 APC scaling factor and offset value registers

APC+00E0h APC control register

APC_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name															GSM	FPU
Type															R/W	R/W
Reset															1	0

GSM Defines the operation mode of the APC module. In GSM mode, each frame has only one slot, thus only one scaling factor and one offset value must be configured. If the GSM bit is set, the programmer needs only to configure APC_SCALOL and APC_OFFSETO. If the bit is not set, the APC module is operating in GPRS mode.

- The APC module is operating in GPRS mode.
- 1 The APC module is operating in GSM mode. Default value.

FPU Forces the APC D/A converter to power up. Test only.

- **0** The APC D/A converter is not forced to power up. The converter is only powered on when the transmission window is opened. Default value.
- 1 The APC D/A converter is forced to power up.

8.3.3 Ramp Profile Programming

The first value of the first normalized ramp profile must be written in the least significant byte of the APC_PFA0 register. The second value must be written in the second least significant byte of the APC_PFA0, and so on.

Each ramp profile can be programmed to form an arbitrary shape.

The start of ramping is triggered by one of the TDMA_APCSTR signals. The timing relationship between TDMA_APCSTR and TDMA slots is depicted in **Figure 82** for 4 consecutive time slots case. The power ramping profile must comply with the timing mask defined in GSM SPEC 05.05. The timing offset values for 7 ramp profiles are stored in the TDMA timer register from TDMA_APC0 to TDMA_APC6.

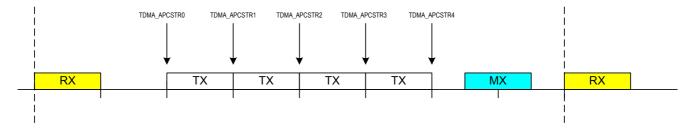


Figure 82 Timing diagram of TDMA APCSTR.

Because the APC unit provides more than 5 ramp profiles, up to 4 consecutive transmission slots can accommodated. The 2 additional ramp profiles are useful particularly when the timing between the last 2 transmission time slots and CTIRQ is uncertain; software can begin writing the ramp profiles for the succeeding frame during the current frame, alleviating the risk of not writing the succeeding frame's profile data in time.

In GPRS mode, to fit the intermediate ramp profile between different power levels, a simple scaling scheme is used to synthesize the ramp profile. The equation is as follows:

$$\begin{aligned} & \mathrm{DA}_0 = \mathrm{OFF} + \mathrm{S}_0 \cdot \frac{\mathrm{DN}_{15,pre} + \mathrm{DN}_0}{2} \\ & \mathrm{DA}_{2k} = \mathrm{OFF} + \mathrm{S}_l \cdot \frac{\mathrm{DN}_{k-1} + \mathrm{DN}_k}{2}, k = 1, ..., 15 \\ & \mathrm{DA}_{2k+1} = \mathrm{OFF} + \mathrm{S}_l \cdot \mathrm{DN}_k, k = 0, 1, ..., 15 \\ & l = \begin{cases} 0, & \text{if } 8 > k \geq 0 \\ 1, & \text{if } 15 \geq k \geq 8 \end{cases} \end{aligned}$$

where $\mathbf{D}\mathbf{A}$ = the data to present to the D/A converter,

DN = the normalized data which is stored in the register APC PFn,

 S_{θ} = the left scaling factor stored in register APC SCALnL,

 S_1 = the right scaling factor stored in register APC_SCALnR, and

OFF = the offset value stored in the register APC_OFFSET_n .

The subscript n denotes the index of the ramp profile.

The ramp calculation before interpolation is as depicted in **Figure 83**.

During each ramp process, each word of the normalized profile is first multiplied by 10-bit scaling factors and added to an offset value to form a bank of 18-bit words. The first 8 words (in the left half part as in **Figure 83**) are multiplied by the left scaling factor S_0 and the last 8 words (in the right half part as in **Figure 83**) are multiplied by the right scaling factor S_1 . The lowest 8 bits of each word are then truncated to get a 10-bit result. The scaling factor is 0x100, which represents no scaling on reset. A value smaller than 0x100 scales the ramp profile down, and a value larger than 100 scales the ramp profile up.

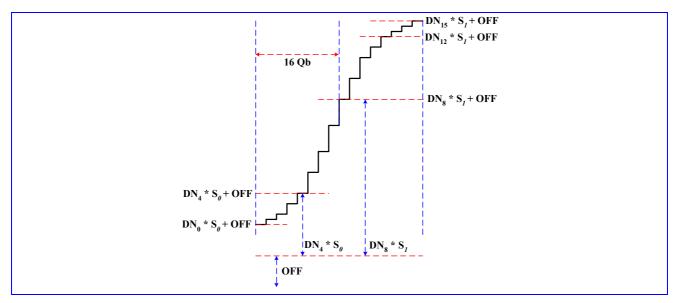


Figure 83 The timing diagram of the APC ramp.

The 16 10-bit words are linearly interpolated into 32 10-bit words. A 10-bit D/A converter is then used to convert these 32 ramp values at a rate of 1.0833 MHz, that is, at quarter-bit rate. The timing diagram is shown in **Figure 84** and the final value is retained on the output until the next event occurs.

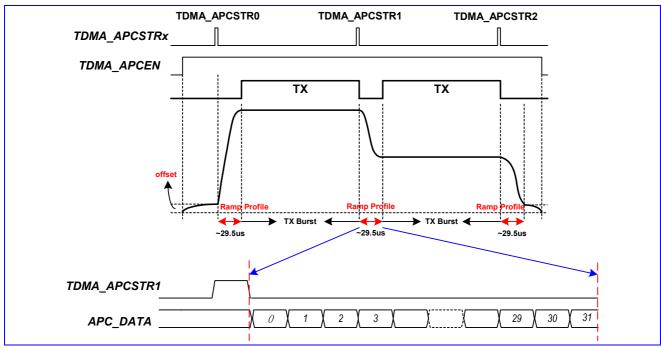


Figure 84 Timing diagram of the APC ramping.

The APC unit is only powered up when the APC window is open. The APC window is controlled by configuring the TDMA registers TDMA_BULCON1 and TDMA_BULCON2. Please refer to the TDMA timer unit for more detailed information.

The first offset value stored in the register APC_OFFSET0 also serves as the pedestal value, which is used to provide the initial power level for the PA.

Since the profile is not double-buffered, the timing to write the ramping profile is critical. The programmer must be restricted from writing to the data buffer during the ramping process, otherwise the ramp profile may be incorrect and lead to a malfunction.

8.4 Automatic Frequency Control (AFC) Unit

8.4.1 General Description

The Automatic Frequency Control (AFC) unit provides the direct control of the oscillator for frequency offset and Doppler shift compensation. The block diagram is of the AFC unit depicted in **Figure 85**. The module utilizes a 13-bit D/A converter to achieve high-resolution control. Two modes of operation provide flexibility when controlling the oscillator; they are described as follows.

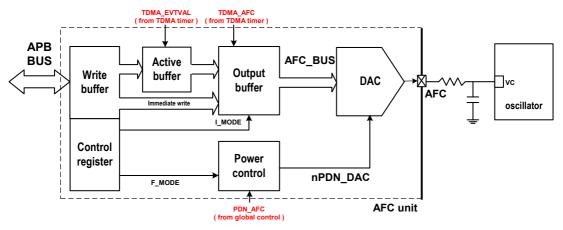


Figure 85 Block Diagram of the AFC Controller

In timer-triggered mode, the TDMA timer controls the AFC enabling events. Each TDMA frame can pulse at most four events. Double buffer architecture is supported. AFC values can be written to the write buffers. When the signal TDMA_EVTVAL is received, the values in the write buffers are latched into the active buffers. However, AFC values can also be written to the active buffers directly. Each event is associated with an active buffer sharing the same index. When a TDMA event is triggered by TDMA_AFC, the value in the corresponding active buffer takes effect. **Figure 86** shows a timing diagram of AFC events with respect to TX/RX/MX windows. In this mode, the D/A converter can stay powered on or be powered on for a programmable duration (256 quarter-bits, by default). The latter option is for power saving.

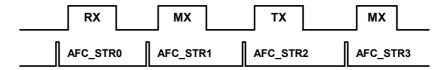


Figure 86 Timing Diagram for the AFC Controller

In immediate mode, the MCU can directly control the AFC value without event-triggering. The value written by the MCU takes effect immediately. In this mode, the D/A converter must be powered on continuously. When transitioning from immediate mode into timer-triggered mode (by setting flag I_MODE in the register AFC_CON to be 0), the D/A converter is kept powered on for a programmable duration (256 quarter-bits by default) if a TDMA_AFC is not been pulsed. The duration is prolonged upon receiving events.

8.4.2 Register Definitions

AFC+0000h AFC control register

AFC_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name													RDAC T	F_MO DE	FETE NV	I_MO
Type													R/W	R/W	R/W	R/W
Reset													0	0	0	0

Four control modes are defined and can be controlled through the AFC control register.

RDACT The flag enables the direct read operation from the active buffer. Note that the control flag is only applicable to the four data buffers AFC DAT0, AFC DAT1, AFC DAT2, and AFC DAT3.

- **O** APB read from the write buffer.
- 1 APB read from the active buffer.

FETENV The flag enables the direct write operation to the active buffer. Note that the control flag is only applicable to the four data buffers AFC_DAT0, AFC_DAT1, AFC_DAT2, and AFC_DAT3.

- O APB write to the write buffer.
- 1 APB write to the active buffer.
- **F_MODE** The flag enables the force power up mode.
 - The force power up mode is not enabled.
 - 1 The force power up mode is enabled.
- **I_MODE** The flag enables immediate mode. To enable immediate mode, force power up mode must also be enabled.
 - **0** Immediate mode is not enabled.
 - 1 Immediate mode is enabled.

AFC +0004h AFC data register 0

AFC_DAT0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										AFCD						
Type										R/W						

The register stores the AFC value for the event 0 triggered by the TDMA timer in timer-triggered mode. When the RDACT or FETENV bit (of the AFC_CON register) is set, the data transfer operates on the active buffer. When neither flag is set, the data transfer operates on the write buffer.

AFCD The AFC sample for the D/A converter.

Four registers (AFC_DAT0, AFC_DAT1, AFC_DAT2, AFC_DAT3) of the same type correspond to the event triggered by the TDMA timer. The four registers are summarized in **Table 51**.

Register Address	Register Function	Acronym
AFC +0004h	AFC control value 0	AFC_DAT0
AFC +0008h	AFC control value 1	AFC_DAT1
AFC +000Ch	AFC control value 2	AFC_DAT2
AFC +0010h	AFC control value 3	AFC_DAT3

Table 51 AFC Data Registers

Immediate mode can only use AFC_DAT0. In this mode, only the control value in the AFC_DAT0 write buffer is used to control the D/A converter. Unlike timer-triggered mode, the control value in AFC_DAT0 write buffer can bypass the active buffer stage and be directly coupled to the output buffer in immediate mode. To use immediate mode, program the AFC_DAT0 in advance and then enable immediate mode by setting the I_MODE flag in the AFC_CON register.

The registers AFC_DATA0, AFC_DAT1, AFC_DAT2, and AFC_DAT3 have no initial values, thus the register must be programmed before any AFC event takes place. The AFC value for the D/A converter, i.e., the output buffer value, is initially 0 after power up before any event occurs.

AFC +0014h AFC power up period

AFC_PUPER

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									F	U_PEF	₹					
Type										R/W						
Reset										ff						

This register stores the AFC power up period, which is 13 bits wide. The value ranges from 0 to 8191. If the I_MODE or F_MODE flag is set, this register has no effect since the D/A converter is powered up continuously. If neither flag is set, the register controls the power up duration of the D/A converter. During that period, the signal nPDN_DAC in **Figure 85** is set to 1(power up).

PU_PER Stores the AFC power up period. After hardware power up, the field is initialized to 255.

9 Baseband Front End

Baseband Front End is a modem interface between TX/RX mixed-signal modules and digital signal processor (DSP). We can divide this block into two parts (see 錯誤! 找不到參照來源。). The first is the uplink (transmitting) path, which converts bit-stream from DSP into digital in-phase (I) and quadrature (Q) signals for TX mixed-signal module. The second part is the downlink (receiving) path, which receives digital in-phase (I) and quadrature (Q) signals from RX mixed-signal module, performs FIR filtering and then sends results to DSP. 錯誤! 找不到參照來源。 illustrates interconnection around Baseband Front End. In the figure the shadowed blocks compose Baseband Front End.

The uplink path is mainly composed of GMSK Modulator and uplink parts of Baseband Serial Ports, and the downlink path is mainly composed of RX digital FIR filter, RX interference detection filter (ITD) including power measurement blocks, downlink parts of Baseband Serial Ports and DSP I/O. Baseband Serial Ports is a serial interface used to communicate with DSP. In addition, there is a set of control registers in Baseband Front End that is intended for control of TX/RX mixed-signal modules, inclusive of several compensation circuit: calibration of I/Q DC offset, I/Q Quadrature Phase Compensation and I/Q Gain Mismatch of uplink analog-to-digital (D/A) converters as well as I/Q Gain Mismatch for downlink digital-to-analog (A/D) converters in TX/RX mixed-signal modules. The timing of bit streaming through Baseband Front End is completely under control of TDMA timer. Usually only either of uplink and downlink paths is active at one moment. However, both of the uplink and downlink paths will be active simultaneously when Baseband Front End is in loopback mode.

When either of TX windows in TDMA timer is opened, the uplink path in Baseband Front End will be activated. Accordingly components on the uplink path such as GMSK Modulator will be powered on, and then TX mixed-signal module is also powered on. The sub-block Baseband Serial Ports will sink TX data bits from DSP and then forward them to GMSK Modulator. The outputs from GMSK Modulator are sent to TX mixed-signal module in format of I/Q signals. Finally D/A conversions are performed in TX mixed-signal module and the output analog signal is output to RF module.

Similarly, while either of RX windows in TDMA timer is opened, the downlink path in Baseband Front End will be activated. Accordingly components on the downlink path such as RX mixed-signal module and RX digital FIR filter are then powered on. First A/D conversions are performed in RX mixed-signal module, and then the results in format of I/Q signals are sourced to Low Pass Filtering with different bandwidth (Narrow one about $F_C = 90 \text{ kHz}$, Wide one about $F_C = 110 \text{khz}$), Interference Detection Circuit to determine which Filter to be used by judging receiving power on current burst. Additionally, "I/Q Compensation Circuit" is an option in data path for modifying Receiving I/Q pair gain mismatch. Finally the results will be sourced to DSP through Baseband Serial Ports.

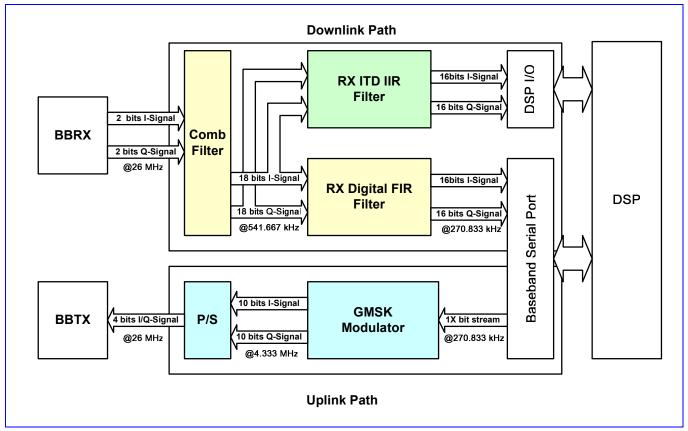


Figure 87 Block Diagram of Baseband Front End

9.1 Baseband Serial Ports

9.1.1 General Description

Baseband Front End communicates with DSP through the sub block of Baseband Serial Ports. Baseband Serial Ports interfaces with DSP in serial manner. This implies that DSP must be configured carefully in order to have Baseband Serial Ports cooperate with DSP core correctly.

If downlink path is programmed in bypass-filter mode (**NOT** bypass-filter loopback mode), behavior of Baseband Serial Ports will be completely be different from that in normal function mode. The special mode is for testing purpose. Please see the subsequent section of Downlink Path for more details.

TX and RX windows are under control of TDMA timer. Please refer to functional specification of TDMA timer for the details on how to open/close a TX/RX window. Opening/Closing of TX/RX windows have two major effects on Baseband Front End: power on/off of corresponding components and data souring/sinking. It is worth noticing that Baseband Serial Ports is only intended for sinking TX data from DSP or sourcing data to DSP. It does not involve power on/off of TX/RX mixed-signal modules.

As far as downlink path is concerned, if a RX window is opened by TDMA timer Baseband Front End will have RX mixed-signal module proceed to make A/D conversion, two parallel RX digital filter proceed to perform filtering and Baseband Serial Ports be activated to source data from RX digital filter to Master DSP while Power Measurement through

DSP I/O to DSP no matter the data is meaningful or not. However, the interval between the moment that RX mixed-signal module is powered on and the moment that data proceed to be dumped by Baseband Serial Ports can be well controlled in TDMA timer. Let us denote RX enable window as the interval that RX mixed-signal module is powered on and denote RX dump window as the interval that data is dumped by Baseband Serial Ports. If the first samples from RX digital filter desire to be discarded, the corresponding RX enable window must cover the corresponding RX dump window. Note that RX dump windows always win over RX enable windows. It means that a RX dump window will always raise a RX enable window. RX enable windows can be raised by TDMA timer or by programming RX power-down bit in global control registers to be '0'. This is useful in debugging environment.

Similarly, a TX dump window refers to the interval that Baseband Serial Ports sinks data from DSP on uplink path and a TX enable window refers to the interval that TX mixed-signal module is powered on. A TX window controlled by TDMA timer involves a TX dump window and a TX enable window simultaneously. The interval between the moment that TX mixed-signal module is powered on and the moment that data proceed to be forwarded from DSP to GMSK or 8PSK modulator by Baseband Serial Ports can be well controlled in TDMA timer. TX dump windows always win over TX enable windows. It means that a TX dump window will always raise a TX enable window. TX enable windows can be raised by TDMA timer or by programming TX power-down bit in global control registers to be '0'. It is useful in debugging environment.

Accordingly, Baseband Serial Ports are only under the control of TX/RX dump window. Note that if TX/RX dump window is not integer multiplies of bit-time it will be extended to be integer multiplies of bit-time. For example, if TX/RX dump window has interval of 156.25 bit-times then it will be extended to 157 bit-times in Baseband Serial Ports.

For uplink path, if uplink path is enabled, then the bit BULEN (Baseband Up-Link Enable) will be '1'. Otherwise the bit BULEN will be 0.

For downlink path, if BDLEN (Baseband DownLink Enable) is enabled, RX mixed-signal module will also be powered on. Similarly, once uplink path is enabled, TX mixed-signal module will also be powered on. Furthermore, enabling BDLFS (Baseband Down-Link FrameSync) Baseband Serial Ports for downlink path refers to dumping results from RX digital FIR filter to DSP.

9.1.2 Register Definitions

BFE+0000h Base-band Common Control Register

BFE_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																BCIE N
Type																R/W
Reset																0

This register is for common control of Baseband Front End. It consists of ciphering encryption control.

BCIEN The bit is for ciphering encryption control. If the bit is set to '1', XOR will be performed on some TX bits (payload of Normal Burst) and ciphering pattern bit from DSP, and then the result is forwarded to GMSK Modulator only. Meanwhile, Baseband Front End will generate signals to drive DSP ciphering process and produce corresponding ciphering pattern bits if the bit is set to '1'. If the bit is set to '0', the TX bit from DSP will be forwarded to GMSK modulator directly. Baseband Front End will not activate DSP ciphering process.

- O Disable ciphering encryption.
- 1 Enable ciphering encryption.

BFE +0004h Base-band Common Status Register

BFE_STA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								BULE	_	_	BULF	_	_	BULF	BDLF	BDLE
							N4	N3	N2	N1	S4	S3	S2	S1	S	N
Type							RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset							0	0	0	0	0	0	0	0	0	0

This register indicates status of Baseband Front End. Under control of TDMA timer, Baseband Front End can be driven in several statuses. If downlink path is enabled, then the bit BDLEN will be '1'. Otherwise the bit BDLEN will be '0'. If downlink parts of Baseband Serial Ports is enabled, the bit BDLFS will be '1'. Otherwise the bit BULEN will be '0'. If uplink path is enabled, then the bit BULEN will be '1'. Otherwise the bit BULEN will be 0. If uplink parts of Baseband Serial Ports is enabled, the bit BULFS will be '1'. Otherwise the bit BULFS will be '0'. Once downlink path is enabled, RX mixed-signal module will also be powered on. Similarly, once uplink path is enabled, TX mixed-signal module will also be powered on. Furthermore, enabling Baseband Serial Ports for downlink path refers to dumping results from RX digital FIR filter to DSP. Similarly, enabling Baseband Serial Ports for uplink path refers to forwarding TX bit from DSP to GMSK modulator. BDLEN stands for "Baseband DownLink ENable". BULEN stands for "Baseband UpLink ENable". BDLFS stands for "Baseband UpLink FrameSync".

BDLEN Indicate if downlink path is enabled.

- O Disabled
- 1 Enabled

BDLFS Indicate if Baseband Serial Ports for downlink path is enabled.

- 0 Disabled
- 1 Enabled

BULFS1 Indicate if Baseband Serial Ports for uplink path is enabled in 1st burst

- O Disabled
- 1 Enabled

BULFS2 Indicate if Baseband Serial Ports for uplink path is enabled in 2nd burst

- O Disabled
- 1 Enabled

BULFS3 Indicate if Baseband Serial Ports for uplink path is enabled in 3rd burst

- O Disabled
- 1 Enabled

BULFS4 Indicate if Baseband Serial Ports for uplink path is enabled in 4th burst

- O Disabled
- Enabled

BULEN1 Indicate if uplink path is enabled in 1st burst.

- 0 Disabled
- 1 Enabled

BULEN2 Indicate if uplink path is enabled in 2nd burst.

- O Disabled
- 1 Enabled

BULEN3 Indicate if uplink path is enabled in 3rd burst.

- O Disabled
- 1 Enabled

BULEN4 Indicate if uplink path is enabled in 4th burst.

- O Disabled
- 1 Enabled

9.2 Downlink Path (RX Path)

9.2.1 General Description

On the downlink path, the sub-block between RX mixed-signal module and Baseband Serial Ports is RX Path. It mainly consists of two parallel digital FIR filter with programmable tap number, two sets of multiplexing paths for loopback modes, interface for RX mixed-signal module, Interference Detection Circuit, I/Q Gain Mismatch compensation circuit, and interface for Baseband Serial Ports. The block diagram is shown in 錯誤! 找不到參照來源。.

While RX enable windows are open, RX Path will issue control signals to have RX mixed-signal module proceed to make A/D conversion. As each conversion is finished, one set of I/Q signals will be latched. There exists a digital FIR filter for these I/Q signals. The result of filtering will be dumped to Baseband Serial Ports whenever RX dump windows are opened.

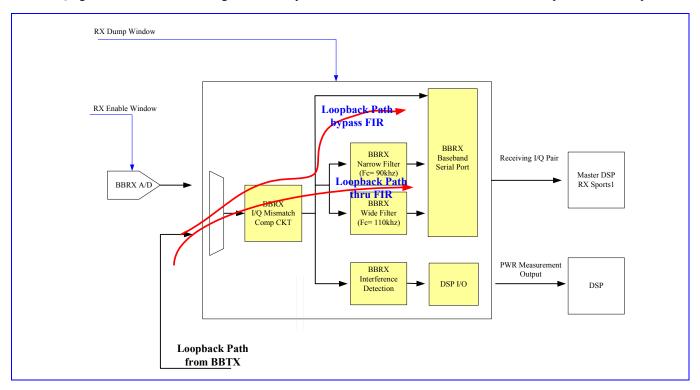


Figure 88 Block Diagram of RX Path

9.2.2 Comb Filter

The comb filter which takes the 2-bit A/D converter as input, and output the 18-bit I/Q data words to the baseband receiving path. The system is designed as 48X over-sampling with symbol period 541.7 kHz, thus the data inputs are 26MHz 2-bit signal. The input 2-bit signals are formed in (sign, magnitude) manner; that is, total 3 values are permitted as input: (-1, 0, +1).

The data path is mainly a decimation filter which contains the integration stages and the decimation stages. For a 3^{rd} order design with 48X over-sampling, gain of the data path is $48^3 = 110592$, which locates between 2^{16} and 2^{17} . Thus the internal word-length must be set to 18-bit to avoid overflow in the integration process.

9.2.3 Compensation Circuit - I/Q Gain Mismatch

In order to compensate I/Q Gain Mismatch, configure IGAINSEL(I Gain Selection) in RX_CON control register, the I over Q ratio can be compensate for 0.3 dB/step, totally 11 steps resulted in dynamic range up to +/-1.5dB.

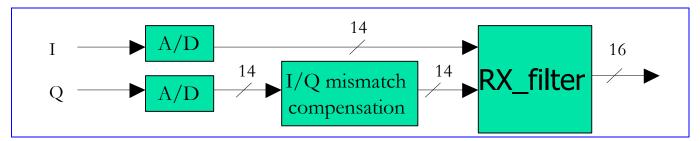


Figure 89 I/Q Mismatch Compensation Block Diagram

The I/Q swap functionality can be setting "1" for SWAP(I/Q Swapping) in RX_CFG control register, which is used to swap I/Q channel signals from RX mixed-signal module before they are latched into RX digital FIR filter. It is intended to provide flexibility for I/Q connection with RF modules

9.2.4 Phase De-rotation Circuit

Phase De-rotation Mode will usually turn on during FCB Detection for down conversion the wide spread receiving power to 67.7 kHz single tone.

Two separate control for implement this mode on data path through NarrowFIR filter or WideFIR filter by setting '1' to PHROEN_N (Phase Rotate Enable for NarrowFIR) or PHROEN_W(Phase Rotate Enable for WideFIR) in RX_CON control register, respectively.

9.2.5 Adaptive Bandwidth & Programmable Digital FIR Filter

For the two parallel digital FIR Filter, the total tap number is programmable by FIRTPNO(FIR Tap number) in RX_CFG control register, which will configure the filter with different tap buffer depth.

9.2.5.1 Programmable tap & programmable Coefficient for FIR

In order to satisfy the signal requirements in both of idle and traffic modes, two sets of coefficients must be provided for the RX digital FIR filter. Therefore, the RX digital FIR filter is implemented as a FIR filter with programmable coefficients which can be accessed on the APB bus. The coefficient number can be programmable, range from 1~31. Each coefficient is ten-bit wide and coded in 2's complement.

Take 21 Tap Coefficient for example, based on assumption that the FIR filter has symmetric coefficients, only 11 coefficients are implemented as programmable registers to save gate count. Denoting these digital filter coefficients as $RX_RAM0_CS0 \sim RX_RAM0_CS11(RX_RAM0 Coefficient Set 0~11)$, and these tap registers for I/Q channel signals as I/QTAPR [0:20], then the RX digital FIR filtering can be represented as the following equation:

$$I_{out}(m) = \sum_{i=0}^{20} BDLDFCR[i] * ITAPR[i] \bigg|_{\text{at time n+4m}} = BDLDFCR[11] * ITAPR[11] + \sum_{i=0}^{11} BDLDFCR[i] * (ITAPR[i] + ITAPR[20 - i]) \bigg|_{\text{at time n+4m}} = BDLDFCR[11] * QTAPR[11] + \sum_{i=0}^{11} BDLDFCR[i] * (QTAPR[i] + QTAPR[20 - i]) \bigg|_{\text{at time n+4m}} = BDLDFCR[i] * QTAPR[i] + \sum_{i=0}^{11} BDLDFCR[i] * (QTAPR[i] + QTAPR[20 - i]) \bigg|_{\text{at time n+4m}}$$

$$BDLDFCR[i] = BDLDFCR[20 - i], i = 0,1,...,11$$

where ITAPR [0] and QTAPR [0] are the latest samples for I- and Q-channel respectively and assume $I_{out}(0)$, $Q_{out}(0)$ are obtained based on the content of tap registers at time moment n. From the equation above it follows that the digital RX FIR filter will produce one output every four data conversions out of A/D converters. That is, filtering and decimation are performed simultaneously to achieve low power design.

However, different "Coefficient Set ID" (CS ID) will be dump to Slave DSP RX buffer to represent the current selecting of coefficient Set from either 2 ROM table or 2 set of programmable RAM table according to different burst mode, while ROM table are fixed coefficient and RAM table can be programmed through 2set of 16 control register (RX_RAM0_CS0~RX_RAM1_CS15, (RX_RAM1_CS0~RX_RAM1_CS15). Generally, CSID = 0 represent ROM table selection, while CSID 2~CSID 15 represent RAM table selection. Please be noted that the total coefficient number in a RAM table should be greater than half of the FIRTPNO (total FIR Tap number) and smaller than half of maximum tap number (15) since the FIR function in symmetric behavior.

Additionally, the data sequence of two parallel FIR filter output will dump to Master DSP RX buffer in following order: "I channel output from Narrow FIR"=> "I channel output from Wide FIR""=> "Q channel output from Narrow FIR=>" Q channel output from Wide FIR.

9.2.5.1.1 Coefficient Set Selection

The Coefficient Set used for digital FIR can be changed during different burst mode switching. For example, during Normal Burst while no FB_STROBE (Frequency Burst Strobe, comes from TDMA controller) assertion, defined as "State B", "Coefficient Set ID" (CSID) selection for both Narrow/Wide filter can be configured by ST_B_WCOF_SEL (State B Wide FIR Coefficient Selection) and "ST_B_NCOF_SEL" (State B Narrow FIR Coefficient Selection) on RX_FIR_CSID_CON control register, respectively. Usually during State B, Layer 1 software will select RAM table coefficient from either RAM0 or RAM1 table in condition I for Narrow FIR and Wide FIR, respectively. The CS ID for both Narrow / Wide FIR filter be stored at Slave DSP RX buffer once TDMA trigger RX interrupt to DSP..ST_A_NCOF_SEL" (State A Narrow FIR Coefficient Selection) on RX_FIR_CSID_CON control register.

During FCB detection, MCU will notice TDMA controller by assertion FB_STROBE, defined as "StateA". "Coefficient Set ID" (CS ID) selection for both Narrow/Wide filter can be configured by ST_A_WCOF_SEL(State A Wide FIR Coefficient Selection) and "ST_A_NCOF_SEL" (State A Narrow FIR Coefficient Selection) on RX_FIR_CSID_CON control register, respectively. Usually during State B, Layer 1 software will select CS ID 2 and CSID 3 from either ROM0 or ROM1 table or RAM0 or RAM1 table in Condition II for Narrow FIR and Wide FIR, respectively.

9.2.5.2 Interference Detection Circuit for Adaptive Bandwidth Scheme

Used to compare the power of Co-channel Interference and Adjacent-channel Interference for determine if WideFIR filter is needed rather than default NarrowFIR filter. Two parallel path of power measurement for evaluating Co-channel effect or Adjacent Channel Effect by analyzing power after High Pass Filter (HPF) or Band Pass Filter (BPF), respectively. If Co-channel effect is worse than Adjacent Channel effect, WideFIR filter is needed.

The power measurement is accumulate I/Q Root Mean Square (RMS) power over the whole RX burst window, while exact accumulation period within the burst can be adjusted the starting point offset and duration length.. The "starting point Offset" and be configured by "RXID_PWR_OFF[7:0]" (RX Interference Detection Power Starting Point Offset) and duration period by "RXID_PWR_PER[7:0]"(RX Interference Detection Power Duration Period) in RX_PM_CON control register, while default value for starting offset is 11 and duration period is 141. The two accumulated power measurement output for Co-channel and Adjacent-channel will be dump to Slave DSP RX buffer alternatively at the end of the duration period within a burst. However, if the duration period is longer than the RX Dump Window, the accumulated measurement output will be dump out at falling edge of RX DUMP Window rather than the end of configured duration period.

Additionally, the power measurement data sequence at Slave DSP RX buffer will be "Coefficient Set ID for NarrowFIR filter"=> "Coefficient Set ID for WideFIR filter"=> "Power output of HPF(Co-channel)=>"Power output of BPF(Adjacent-channel), while the coefficient Set ID (CSID) is for DSP debug purpose.

The power result can be further scale down by control the PWR_SHFT_NO (power right Shift Number) in RX_CON control register. E.g. set to "1" will divide the power output by two.

9.2.5.3 Supporting Single Filter 2X symbol rate Mode

The two parallel FIR filter default output data rate in 1x Symbol rate after 2X decimation. but by programming 2XFIRSEL(2x Symbol Rate FIR Selection) in RX_CFG control register, WideFIR filter will be disable, while NarrowFIR filter will output data rate in 2X symbol rate without 2x decimation.

9.2.6 Debug Mode

9.2.6.1 Normal Mode bypass Filter

By setting "1" for BYPFLTR(Bypass Filter) in RX_CFG control register, the ADC outputs out of RX mixed-signal module will be directed into Baseband Serial Ports directly without through FIR. Limited by bandwidth of the serial interface between Baseband Serial Ports and DSP, only ADC outputs which are from either I-channel or Q-channel ADC can be dumped into DSP. Both I- and Q-channel ADC outputs cannot be dumped simultaneously. Which channel will be dumped is controlled by the register bit SWAP of the control register RX_CFG when downlink path is programmed in "Bypass RX digital FIR filter" mode. See register definition below for more details. The mode is for measurement of performance of A/D converters in RX mixed-signal module.

9.2.6.2 TX-RX Digital Loopback Mode (Debug Mode)

In addition to normal function, there are two loopback modes in RX Path. One is bypass-filter loopback mode, and the other is through-filter loopback mode. They are intended for verification of DSP firmware and hardware. The bypass-filter loopback mode refers to that RX digital FIR filter is not on the loopback path. However, the through-filter loopback mode refers to that RX digital FIR filter is on the loopback path, while "thru-Filter Loopback Mode" can be configured by setting "2'b10" for BLPEN(Baseband Loopback Enable) or "bypass-Filter Loopback Mode" by setting "2'b01" for BLPEN in RX CON control register.

9.2.7 Register Definitions

BFE	+0010	0h	RX C	onfig	uratio	on Re	giste	r							RX_	CFG
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Name			FIRTPNO	2X FIRSE L	BYPF LTR	SWA P
Type			R/W	R/W	R/W	R/W
Reset			000000	0	0	0

This register is for configuration of downlink path, inclusive of configuration of RX mixed-signal module and RX path in Baseband Front End.

- **SWAP** This register bit is for control of whether I/Q channel signals need to swap before they are inputted to Baseband Front End. It provides flexibility flexible of connection of I/Q channel signals between RF module and baseband module. The register bit has another purpose when the register bit "BYPFLTR" is set to 1. Please see description for the register bit "BYPFLTR".
 - **0** I- and Q-channel signals are not swapped
 - 1 I- and Q-channel signals are swapped
- BYPFLTR Bypass RX FIR Filter control. The register bit is used to configure Baseband Front End in the state called "Bypass RX FIR filter state" or not. Once the bit is set to '1', RX FIR filter will be bypassed. That is, ADC outputs of RX mixed-signal module that are has 11-bit resolution and at sampling rate of 1.083MHz can be dumped into DSP by Baseband Serial Ports and RX FIR filtering will not be performed on them. Limited by bandwidth of the serial interface between Baseband Serial Ports and DSP, these ADC outputs are all from either I-channel or Q-channel ADC. Both of I- and Q-channel ADC outputs cannot be dumped simultaneously. When the bit is set to '1' and the register bit "SWAP" is set to '0', ADC outputs of I-channel will be dumped. When the bit is set to '1' and the register bit "SWAP" is set to '1', ADC outputs of Q-channel will be dumped.
 - O Not bypass RX FIR filter
 - 1 Bypass RX FIR filter
- **2XFIRSEL** Enable for single FIR w/ output data rate in 2x Symbol rate output Enable. This mode will disable WideFIR, while Narrow FIR w/ 2x symbol rate without 2x decimation.
 - O Disable Single FIR 2X symbol rate output mode.
 - 1 Enable Single FIR 2X Symbol rate output mode
- **FIRTPNO** RX FIR filter tap no. select. This control register will control the two parallel digital filter with different tap buffer depth since the FIR function in symmetric behavior. The maximum tap number is 31, minimum is 1., ODD number only.

BFE+0014h RX Control Register

RX_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					F	WR_S	HFT_N	0		IGAII	NSEL		PH_R OEN_ N	PH_R OEN_ W	BLF	EN
Type						R/W				R/	W		R/W	R/W	R/	W
Reset						0000				00	00		0	0	0	0

This register is for control of downlink path, inclusive of control of RX mixed-signal module and RX path in Baseband Front End module.

BLPEN The register field is for loopback configuration selection in Baseband Front End.

- **00** Configure Baseband Front End in normal function mode
- **01** Configure Baseband Front End in bypass-filter loopback mode
- 10 Configure Baseband Front End in through-filter loopback mode

11 Reserved

PH_ROEN_W Enable for I/Q pair Phase De-rotation in Wide FIR Data Path,

- O Disable Phase De-rotation for I/Q pair.
- 1 Enable Phase De-rotation for I/Q pair.

PH_ROEN_N Enable for I/Q pair Phase De-rotation in Narrow FIR Data Path,

- O Disable Phase De-rotation for I/Q pair.
- 1 Enable Phase De-rotation for I/Q pair.

IGAINSEL RX I data Gain Compensation Select. 0.3dB/step, totally 11 steps and dynamic range up to +/-1.5dB for

0000 compensate 0dB for I/Q

0001 compensate 0.3dB for I/Q

0010 compensate 0.6dB for I/Q

0011 compensate 0.9dB for I/Q

0100 compensate 1.2dB for I/Q

0101 compensate 1.5dB for I/Q

1001 compensate –0.3dB for I/Q

1010 compensate -0.6dB for I/Q

1011 compensate –0.9dB for I/Q

1100 compensate –1.2dB for I/Q

1101 compensate –1.5dB for I/Q

Default No compensation for I/Q

PWR_SHFT_NO Power measuring Result Right Shift Number. The Power level measurement result can be right shift from 0 to 16 bits.

BFE+0018h

RX Interference Detection Power Measurement Control Register

RX_PWR_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			R	XID_P\	NR_PE	R					R	XID_PV	VR_OF	F		
Type				R	W							R/	W			
Reset				8	D							Е	3			

RXID_PWR_OFF RX Interference Detection Power Measurement Starting Offset. Setting this register will delay the starting time of Interference Detection Power Measurement in symbol time unit. Maximum value is 156, while default value is 11 (0xB).

RXID_PWR_PER RX Interference Detection Power Measurement Accumulation Period. By setting this control register will determine the length of accumulation duration for power Measurement. Minimum value is 0, Maximum value is 156, while default value is 141(0x8D). Please notice that RXID_PWR_OFF + RXID_PWR_PER should less than 155 due to hardware implementation limitation.

BFE+001Ch RX FIR Coefficient Set ID Control Register

RX CSSEEL CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	F	X_CSS	EL_N_/	4		_	-	-	RX	CSSE	L_N_B		RX	_CSSE	L_W_B	
Type		R/	W							R/V	/			R/M	1	
Reset		00	00			•	•			001	0	•		001	1	

These three set of Coefficient Set ID will be dump to slave DSP RX Buffer for indicating the current selection of FIR coefficient from either RAM or ROM table, while CSID= 0 represents ROM table selection, and CSID2~CSID15 represent RAM table selection.

RX_CSSEL_W_B

State B Coefficient Set Selection for WideFIR

RX_CSSEL_N_B

State B Coefficient Set Selection for Narrow FIR

RX_CSSEL_N_A

State A Coefficient Set Selection for Narrow FIR

BFE +0070h RX RAM0Coefficient Set 0Register

RX_FIR_COEF_N0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											BDLDF	COR_N				
Type											R/	W				
Reset									•		00000	00000		•	•	-

This register is 1st of the 16 coefficient in RAM0 table, Coefficient Set ID 2 or 4. The content is coded in 2's complement. That is, its maximum is 255 and its minimum is –256, while the total coefficient number in this Coefficient Set has to be greater than half of TAPNO(programmable Tap no.) and smaller than half of maximum tap no(15).

Register Address	Register Function	Acronym
BFE +0070h	RX RAM0Coefficient Set 0 Register	RX_FIR_COEF_N0
BFE +0074h	RX RAM0Coefficient Set 1 Register	RX_FIR_COEF_N1
BFE +0078h	RX RAM0Coefficient Set 2 Register	RX_FIR_COEF_N2
BFE +007Ch	RX RAM0Coefficient Set 3 Register	RX_FIR_COEF_N3
BFE +0080h	RX RAM0Coefficient Set 4 Register	RX_FIR_COEF_N4
BFE +0084h	RX RAM0Coefficient Set 5 Register	RX_FIR_COEF_N5
BFE +0088h	RX RAM0Coefficient Set 6 Register	RX_FIR_COEF_N6
BFE +008Ch	RX RAM0Coefficient Set 7 Register	RX_FIR_COEF_N7
BFE +0090h	RX RAM0Coefficient Set 8 Register	RX_FIR_COEF_N8
BFE +0094h	RX RAM0Coefficient Set 9 Register	RX_FIR_COEF_N9
BFE +0098h	RX RAM0Coefficient Set 10 Register	RX_FIR_COEF_N10
BFE +009Ch	RX RAM0Coefficient Set 11Register	RX_FIR_COEF_N11
BFE +00a0h	RX RAM0Coefficient Set 12Register	RX_FIR_COEF_N12
BFE +00a4h	RX RAM0Coefficient Set 13Register	RX_FIR_COEF_N13
BFE +00a8h	RX RAM0Coefficient Set 14 Register	RX_FIR_COEF_N14
BFE +00aCh	RX RAM0Coefficient Set 15 Register	RX_FIR_COEF_N15

BFE +0020h RX RAM1 Coefficient Set 0 Register

RX_FIR_COEF_W0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											3DLDF	COR_W	<u> </u>			
Type											R/	W				
Reset											00000	00000				

This register is 1st of the 16 coefficient in RAM1 table, Coefficient Set ID 2 or 4. The content is coded in 2's complement. That is, its maximum is 255 and its minimum is –256, while the total coefficient number in this Coefficient Set has to be greater than half of TAPNO(programmable Tap no.) and smaller than half of maximum tap no(15).

Register Address	Register Function	Acronym
BFE +0020h	RX RAM1 Coefficient Set 0 Register	RX_FIR_COEF_W0
BFE +0024h	RX RAM1 Coefficient Set 1Register	RX_FIR_COEF_W1
BFE +0028h	RX RAM1 Coefficient Set 2 Register	RX_FIR_COEF_W2

BFE +002Ch	RX RAM1 Coefficient Set 3 Register	RX_FIR_COEF_W3
BFE +0030h	RX RAM1 Coefficient Set 4 Register	RX_FIR_COEF_W4
BFE +0034h	RX RAM1 Coefficient Set 5 Register	RX_FIR_COEF_W5
BFE +0038h	RX RAM1 Coefficient Set 6 Register	RX_FIR_COEF_W6
BFE +003Ch	RX RAM1 Coefficient Set 7 Register	RX_FIR_COEF_W7
BFE +0040h	RX RAM1 Coefficient Set 8 Register	RX_FIR_COEF_W8
BFE +0044h	RX RAM1 Coefficient Set 9 Register	RX_FIR_COEF_W9
BFE +0048h	RX RAM1 Coefficient Set 10 Register	RX_FIR_COEF_W10
BFE +004Ch	RX RAM1 Coefficient Set 11 Register	RX_FIR_COEF_W11
BFE +0050h	RX RAM1 Coefficient Set 12 Register	RX_FIR_COEF_W12
BFE +0054h	RX RAM1 Coefficient Set 13 Register	RX_FIR_COEF_W13
BFE +0058h	RX RAM1 Coefficient Set 14 Register	RX_FIR_COEF_W14
BFE +005Ch	RX RAM1 Coefficient Set 15 Register	RX_FIR_COEF_W15

BFE+00B0h RX Interference Detection HPF Power Register RX_HPWR_STS

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							R	X_PWI	R_HPF							
Type								R/G)							
Reset							000	000000	000000	00						

This register is for read the power measurement result of the HPF interference detection filter.

RX_PWR_HPF Value of the power measurement result for the outband interference detection.

BFE+00B4h RX Interference Detection BPF Power Register

RX_BPWR_STS

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		-		_	-	_	F	X_PW	R_BPF	-	-	_	-	_	-	
Type								R/	O							
Reset							000	000000	000000	00						

This register is for read the power measurement result of the BPF interference detection filter.

RX_PWR_BPF Value of the power measurement result for the inband interference detection.

BFE+0743h RX HPF ITD Power Register of Window0

DSPIO ITD H 0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		-	-	_	-		П	D_H_C	ATA_0	1	_	-	-		-	
Type		R/O														
Reset		00000000000000														

This register is for **DSP** to read the power measurement result of the BPF interference detection filter through DSP I/O. **DSPIO_ITD_H_0**Value of the power measurement result for the inband interference detection of window0.

Register Address	Register Function	Acronym
BFE +0743h	RX HPF ITD Power Register of Window0	DSPIO_ITD_H_0
BFE +0747h	RX HPF ITD Power Register of Window1	DSPIO_ITD_H_1
BFE +074Bh	RX HPF ITD Power Register of Window2	DSPIO_ITD_H_2
BFE +074Fh	RX HPF ITD Power Register of Window3	DSPIO_ITD_H_3
BFE +0753h	RX HPF ITD Power Register of Window4	DSPIO_ITD_H_4

BFE +0757h	RX HPF ITD Power Register of Window5	DSPIO_ITD_H_5

BFE+0744h RX BPF ITD Power Register of Window0

DSPIO_ITD_B_0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							IT	D_B_C	ATA_0)						
Type								R/	0							
Reset							000	000000	000000	00						

This register is for **DSP** to read the power measurement result of the BPF interference detection filter through DSP I/O. **DSPIO_ITD_B_0** Value of the power measurement result for the outband interference detection of window0.

	1	
Register Address	Register Function	Acronym
BFE +0744h	RX BPF ITD Power Register of Window0	DSPIO_ITD_B_0
BFE +0748h	RX BPF ITD Power Register of Window1	DSPIO_ITD_B_1
BFE +074Ch	RX BPF ITD Power Register of Window2	DSPIO_ITD_B_2
BFE +0750h	RX BPF ITD Power Register of Window3	DSPIO_ITD_B_3
BFE +0754h	RX BPF ITD Power Register of Window4	DSPIO_ITD_B_4
BFE +0758h	RX BPF ITD Power Register of Window5	DSPIO_ITD_B_5

BFE+0759h RX ITD Power Measurement Ready Flag

DSPIO_RXID_RDY

Bit	15	14	13 12	10	9	8	7 (5		4			3		2		1		0
Name								RXID_R	RDY_	RXID_I	RDY_4	RXID_	RDY_3	RXID	RDY_2	RXID_	RDY_	1 RXID	RDY_0
Type								R/C	0	R/	O	F	R/O	F	R/O	R	2/O	F	₹/0
Reset								0		C)		0		0		0		0

This register is for **DSP** to see whether the RX ITD power register is ready or not through DSP I/O. When the DSPIO_ITD_H_0 and DSPIO_ITD_B_0 are ready, bit 0 is set to 1. Moreover, while DSP read the data of DSPIO_ITD_H_0 and DSPIO_ITD_B_0, bit 0 is reset to 0.

RXID_RDY_0 Ready flag for DSP to read the ITD power measurement result of window0.

RXID RDY 1 Ready flag for DSP to read the ITD power measurement result of window1.

RXID_RDY_2 Ready flag for DSP to read the ITD power measurement result of window2.

RXID_RDY_3 Ready flag for DSP to read the ITD power measurement result of window3.

RXID_RDY_4 Ready flag for DSP to read the ITD power measurement result of window4.

RXID_RDY_5 Ready flag for DSP to read the ITD power measurement result of window5.

9.3 Uplink Path (TX Path)

9.3.1 General Description

The purpose of the uplink path inside Baseband Front End is to sink TX symbols, from DSP, then perform GMSK modulation on them, then perform offset cancellation on I/Q digital signals, and finally control TX mixed-signal module to make D/A conversion on I/Q signals out of GMSK Modulator with offset cancellation. Accordingly, the uplink path is composed of uplink parts of Baseband Serial Ports, GSM Encryptor, GMSK Modulator and several compensation circuits including I/Q DC offset, I/Q Quadrature Phase Compensation, and I/Q Gain Mismatch. The block diagram of uplink path is shown as followed.

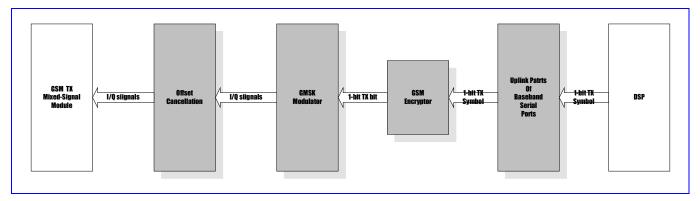


Figure 90 Block Diagram of Uplink Path

On uplink path, the content of a burst, including tail bits, data bits, and training sequence bits is sent from DSP. DSP outputs will be t translated by GMSK Modulator. Where translated bits after modulation will become I/Q digital signals with certain latency.

TDMA timer having a quarter-bit timing accuracy gives the timing windows for uplink operation. Uplink operation is controlled by TX enable window and TX dump window of TDMA timer. Usually, TX enable window is opened earlier than TX dump window. When TX enable window of TDMA timer is opened, uplink path in Baseband Front End will power-on GSK TX mixed-signal module and thus drive valid outputs to RF module. However, uplink parts of Baseband Serial Ports still do not sink data from DSP through the serial interface between Baseband Serial Ports and DSP until TX dump window of TDMA timer is opened.

9.3.2 Compensation Circuit

9.3.2.1 DC offset Cancellation

Offset cancellation will be performed on these I/Q digital signals to compensate offset error of D/A converters (DAC) in TX mixed-signal module. Finally the generated I/Q digital signals will be input to TX mixed-signal module that contains two DAC for I/Q signal respectively.

9.3.3 Auxiliary Calibration Circuit - 540 kHz Sine Tone Generator

By setting '1' to SGEN(Sine Tone Generation) in TX_CFG control register, the BBTX output will become 540khz single sine tone, which is used for Factory Calibration scheme for Mixed Signal Low Pass Filter Cut-off Frequency Accuracy.

9.3.4 GSM Encryptor

When uplink parts of Baseband Serial Ports pass a TX symbol to GSM Encryptor, GSM Encryptor will perform encryption on the TX symbol if set '1' to BCIEN(Baseband Ciphering Encryption) in 錯誤! 找不到參照來源。 register. Otherwise, the TX symbol will be directed to GMSK modulator directly.

9.3.5 Modulation

9.3.5.1 GMSK Modulation

GMSK Modulator is used to convert bit stream of GSM bursts into in-phase and quadrature-phase outputs by means of GMSK modulation scheme. It consists of a ROM table, timing control logic and some state registers for GMSK modulation scheme. GMSK Modulator is activated when TX dump window is opened. There is latency between assertion of TX dump window and the first valid output of GMSK Modulator. The reason is because the bit rate of TX symbols is 270.833 KHz and the output rate of GMSK Modulator is 4.333 MHz, and therefore timing synchronization is necessary between the two rates.

Additionally, in order to prevent phase discontinuity in between the multiple-burst Mode, the GMSK modulator will output continuous 67.7khs sine tone outside the burst once RX DAC Enable window is still asserted. Once RX DAC Enable window is disserted, GMSK modulator will park at DC level.

9.3.5.2 I/Q Swap

By setting '1' to IQSWP in TX_CFG control register, phase on I/Q plane will rotate in inverse direction. This option is to meet the different requirement form RF chip regarding I/Q plane. This control signal is for GMSK Modulation only.

9.3.5.3 Debug Mode

9.3.5.3.1 Modulation Bypass Mode

For DSP debug purpose, set both '1' for MDBYP(Modulator Bypass) in TX_CFG control register and BYPFLR(Bypass RX Filter) in RX_CFG control register for directly loopback DSP 16-bits data (10bits valid data plus sign or zero extension) through DAC only.

9.3.5.3.2 Force GMSK Modulator turn on

By setting '1' to APNDEN(Append Enable) bit in TX CFG control register, GMSK modulator will park on constant DC level during the non-burst period, while the I/Q pair output phase maybe discontinuous since both modulator will be reset at the beginning of the burst. However, the reset of the modulator will be helpful for the debugging purpose.

9.3.6 Register Definitions

BFE +0060h TX Configuration Register

TX CFG

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									ALL_	10_EN	SGEN	MDBY P				APND EN
Type									R'	W	R/W	R/W				R/W
Reset			•		•	•		•	0	0	0	0				0

This register is for configuration of uplink path, inclusive of configuration of TX mixed-signal module and TX path in Baseband Front End.

APNDEN Appending Bits Enable. (For DSP digital loopback debug mode) The register bit is used to control the ending scheme of GPRS Mode GMSK modulation only.

- O Suitable for GPRS /EDGE mode. If a TX enable window contains several TX dump window, then GMSK modulator will still output in the intervals between two TX dump window and all 1's will be fed into GMSK modulator. In the other word, mainly used PA to perform the power ramp up/down, while Modulator output low amplitude sinewave. Note that when the bit is set to '0', the interval between the moment at which TX enable window is activated and the moment at which TX dump window is activated must be multiples of one bit time.
 - Suitable for GSM only. After a TX dump window, GMSK modulator will only output for some bit time.

MDBYP Modulator Bypass (For DSP Debug Mode) Select. The register bit is used to select the bypass mode for I/Q pair outputs bypassed both the GMSK/8PSK modulator

- 0 Regular Modulation Mode
- 1 Bypass Modulator Mode (DSP Debug Mode).

SGEN SineTone Generator Enable. (For Factory Calibration Purpose). The register bit is used to select the TX modulator output switch to 540 kHz Sine Tone.

- **0** BBTX output from regulator modulator output.
- 1 BBTX output switch to 540 kHz sine Tone

ALL_10GEN For Debug mode of BBTX. Generate all 1's or zero's input during BBTX valid burst. For GMSK modulation, set 2'b1 or 2'b10 will generate 67.7 kHz sine tone, while 8PSK modulator will generate 50 kHz sine tone. Default value 2'b00 is normal mode.

- Normal Mode, regular modulator input from Slave DSP TX Buffer.
- 1 Debug Mode, All zero's input pattern generated; GMSK modulator will generate 67.7 kHz sine tone.
- 2 Debug Mode All 1's input pattern generated; GMSK modulator will generate 67.7 kHz sine tone.

BFE +0064h TX Control Register

TX CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						TX_PH_SEL										IQSW P
Type						R/W										R/O
Reset																0

This register is for control of uplink path, inclusive of control of TX mixed-signal module and TX path in Baseband Front End.

IQSWP The register bit is for only read back the IQWAP control register status from TDMA_EVTENA1[7]

0: I and Q are not swapped.

1: I and Q are swapped.

PHSEL Quadrature phase compensation select

000: 0 degree compensation.
001: 1 degree compensation.
010: 2 degree compensation.
011: 3 degree compensation.
100: -3 degree compensation.
101: -2 degree compensation.

110: -1 degree compensation.111: 0 degree compensation.

BFE +0068h TX I/Q Channel Offset Compensation Register

 $\mathsf{TX}_{\mathsf{OFF}}$

Bit	15	14	13 12	11	10	9	8	7	6	5	4	3	2	1	0
Name	OFF_ TYP			OFFQ[5	:0]							OFF	I[5:0]		
Type	R/W			R/W								R	2/W		
Reset	0			00000	0	·	·				•	000	0000		•

The register is for offset cancellation of I-channel DAC in TX mixed-signal module. It is for compensation of offset error caused by I/Q-channel DAC in TX mixed-signal module. It is coded in 2's complement, that is, with maximum 31 and minimum –32.

OFFI Value of offset cancellation for I-channel DAC in TX mixed-signal module

OFFQ Value of offset cancellation for Q-channel DAC in TX mixed-signal module

OFF_TYP Type of the OFFI and OFFQ register. While OFF_TYP = 1, the offset values are double buffered and can be changed burst by burst after EVENT_VALIDATE comes. Otherwise, the offset values would change immidately after the coming of APB commands, which can't be adjusted burst by burst.

- O No double buffer
- 1 Double buffered

10 Timing Generator

Timing is the most critical issue in GSM/GPRS applications. The TDMA timer provides a simple interface for the MCU to program all the timing-related events for receive event control, transmit event control and the timing adjustment. Detailed descriptions are mentioned in Section 10.1.

In pause mode, the 13MHz reference clock may be switched off temporarily for the purpose of power saving and the synchronization to the base-station is maintained by using a low power 32KHz crystal oscillator. The 32KHz oscillator is not accurate and therefore it should be calibrated prior to entering pause mode. The calibration sequence, pause begin sequence and the wake up sequence are described in Section 10.2.

10.1 TDMA timer

The TDMA timer unit is composed of three major blocks: Quarter bit counter, Signal generator and Event registers.

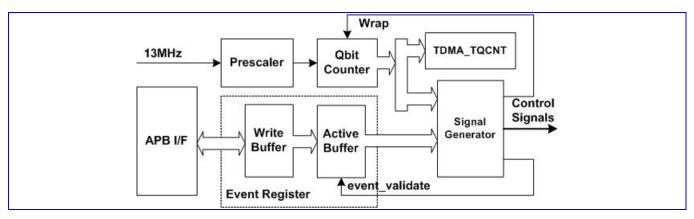


Figure 91 The block diagram of TDMA timer

By default, the quarter-bit counter continuously counts from 0 to the wrap position. In order to apply to cell synchronization and neighboring cell monitoring, the wrap position can be changed by the MCU to shorten or lengthen a TDMA frame. The wrap position is held in the TDMA_WRAP register and the current value of the TDMA quarter bit counter may be read by the MCU via the TDMA_TQCNT register.

The signal generator handles the overall comparing and event-generating processes. When a match has occurred between the quarter bit counter and the event register, a predefined control signal is generated. These control signals may be used for on-chip and off-chip purposes. Signals that change state more than once per frame make use of more than one event register.

The event registers are programmed to contain the quarter bit position of the event that is to occurr. The event registers are double buffered. The MCU writes into the first register, and the event TDMA_EVTVAL transfers the data from the write buffer to the active buffer, which is used by the signal generator for comparison with the quarter bit count. The TDMA_EVTVAL signal itself may be programmed at any quarter bit position. These event registers could be classified into four groups:

On-chip Control Events

TDMA_EVTVAL

This event allows the data values written by the MCU to pass through to the active buffers.

TDMA WRAP

TDMA quarter bit counter wrap position. This sets the position at which the TDMA quarter bit counter resets back to zero. The default value is 4999, changing this value will advance or retard the timing events in the frame following the next TDMA_EVTVAL signal.

TDMA DTIRQ

DSP TDMA interrupt requests. DTIRQ triggers the DSP to read the command from the MCU/DSP Shard RAM to schedule the activities that will be executed in the current frame.

TDMA_CTIRQ1/CTIRQ2

MCU TDMA interrupt requests.

TDMA_AUXADC [1:0]

This signal triggers the monitoring ADC to measure the voltage, current, temperature, device id etc..

TDMA AFC [3:0]

This signal powers up the automatic frequency control DAC for a programmed duration after this event.

Note: For both MCU and DSP TDMA interrupt requests, these signals are all active Low during one quarter bit duration and they should be used as edge sensitive events by the respective interrupt controllers.

On-chip Receive Events

TDMA BDLON [5:0]

These registers are a set of six which contain the quarter bit event that initiates the receive window assertion sequence which powers up and enables the receive ADC, and then enables loading of the receive data into the receive buffer.

TDMA BDLOFF [5:0]

These registers are a set of six which contain the quarter bit event that initiates the receive window de-assertion sequence which disables loading of the receive data into the receive buffer, and then powers down the receive ADC.

TDMA_RXWIN[5:0]

DSP TDMA interrupt requests. TDMA_RXWIN is usually used to initiate the related RX processing including two modes. In single-shot mode, TDMA_RXWIN is generated when the BRXFS signal is de-asserted. In repetitive mode, TDMA_RXWIN will be generated both regularly with a specific interval after BRXFS signal is asserted and when the BRXFS signal is de-asserted.

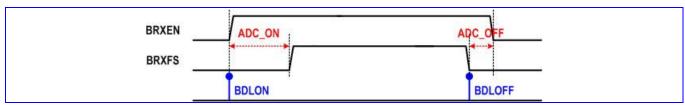


Figure 92 The timing diagram of BRXEN and BRXFS

Note: TDMA_BDLON/OFF event registers, together with TDMA_BDLCON register, generate the corresponding BRXEN and BRXFS window used to power up/down baseband downlink path and control the duration of data transmission to the DSP, respectively.

On-chip Transmit Events

TDMA_APC [6:0]

These registers initiate the loading of the transmit burst shaping values from the transmit burst shaping RAM into the transmit power control DAC.

TDMA_BULON [3:0]

This register contains the quarter bit event that initiates the transmit window assertion sequence which powers up the modulator DAC and then enables reading of bits from the transmit buffer into the GMSK modulator.

TDMA_BULOFF [3:0]

This register contains the quarter bit event that initiates the transmit window de-assertion sequence which disables the reading of bits from the transmit buffer into the GMSK modulator, and then power down the modulator DAC.

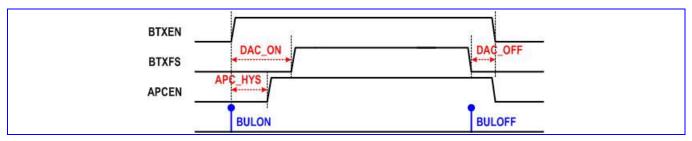


Figure 93 The timing diagram of BTXEN and BTXFS

Note: TDMA_BULON/OFF event registers, together with TDMA_BULCON1, TDMA_BULCON2 register, generate the corresponding BTXEN, BTXFS and APCEN window used to power up/down the baseband uplink path, control the duration of data transmission from the DSP and power up/down the APC DAC, respectively.

Off-chip Control Events

TDMA BSI [15:0]

The quarter bit positions of these 16 BSI events are used to initiate the transfer of serial words to the transceiver and synthesizer for gain control and frequency adjustment.

TDMA BPI [25:0]

The quarter bit positions of these 26 BPI events are used to generate changes of state on the output pins to control the external radio components.

10.1.1 Register Definitions

TDMA+0150h Event Enable Register 0

TDMA	EV	TENA
	_	

0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	AFC3	AFC2	AFC1	AFC0	BDL5	BDL4	BDL3	BDL2	BDL1	BDL0				CTIRQ 2	CTIRQ 1	DTIR Q
Type	R/W				R/W	R/W	R/W									
Reset	0	0	0	0	0	0	0	0	0	0				0	0	0

DTIRQ Enable TDMA_DTIRQ

CTIRQ*n* Enable TDMA CTIRQ*n*

AFC*n* Enable TDMA AFC*n*

BDL*n* Enable TDMA_BDLON*n* and TDMA_BDLOFF*n*

For all these bits.

function is disabled

1 function is enabled

TDMA+0154h Event Enable Register 1

TDMA EVTENA

•

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0																
	Bit	14	13	1 1/	11	10	9	8	7	6	5	4	3	2	1	0

Name	GPRS		BUL ₃	BUL ₂	BUL1	BUL ₀	APC6	APC5	APC4	APC3	APC2	APC1	APC0
Type	R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0	0	0	0	0	0

APC*n* Enable TDMA APC*n*

BUL*n* Enable TDMA_BULON*n* and TDMA_BULOFF*n*

For all these bits,

- function is disabled
- 1 function is enabled

TDMA_EVTENA

2

TDMA +0158h Eve	ent Enable R	legister 2
-----------------	--------------	------------

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	BSI15	BSI14	BSI13	BSI12	BSI11	BSI10	BSI9	BSI8	BSI7	BSI6	BSI5	BSI4	BSI3	BSI2	BSI1	BSI0
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

BSI BSI event enable control

- O Disable TDMA_BSI*n*
- 1 Enable TDMA BSI*n*

TDMA_EVTENA

3

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	BPI15	BPI14	BPI13	BPI12	BPI11	BPI10	BPI9	BPI8	BPI7	BPI6	BPI5	BPI4	BPI3	BPI2	BPI1	BPI0
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	n	n	n	0	0	Λ	Λ	n	0	n	0	n	n	n	0

TDMA+0160h Event Enable Register 4

TDMA +015Ch Event Enable Register 3

TDMA_EVTENA

4

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							BPI25	BPI24	BPI23	BPI22	BPI21	BPI20	BPI19	BPI18	BPI17	BPI16
Type							R/W									
Reset		_		_			0	0	0	0	0	0	0	0	0	0

BPI BPI event enable control

- O Disable TDMA_BPIn
- 1 Enable TDMA_BPI*n*

TDMA_EVTENA

_

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											DIGRF _TX3	DIGRF _TX2	DIGRF _TX1	DIGRF _TX0	AUX1	AUX0
Type											R/W	R/W	R/W	R/W	R/W	R/W
Reset											0	0	0	0	0	0

AUX Auxiliary ADC event enable control

O Disable Auxiliary ADC event

TDMA+0164h Event Enable Register 5

Enable Auxiliary ADC event

DIGRF_TX Dig RF event enable control

- O Disable Dig RF event
- 1 Enable Dig RF event

TDMA_WRAPOF

S

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name															TOI	[1:0]
Type															R/	W
Reset															()

Tol This register defines the value used to advance the Qbit timer in unit of 1/4 quarter bit; the timing advance will be take place as soon as the TDMA EVTVAL is occurred, and it will be cleared automatically.

TDMA +0174h Qbit Timer Biasing Control Register

TDMA_REGBIA

9

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name				TQ_BIAS[13:0]													
Type				R/W													
Reset									C)							

TQ_BIAS This register defines the Qbit offset value which will be added to the registers being programmed. It only takes effects on AFC, BDLON/OFF, BULON/OFF, APC, AUXADC, BSI and BPI event registers.

TDMA +0180h DTX Control Register

TDMA_DTXCON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name													DTX3	DTX2	DTX1	DTX0
Type													R/W	R/W	R/W	R/W

DTX DTX flag is used to disable the associated transmit signals

- BULONO, BULOFFO, APC_EVO & APC_EV1 are controlled by TDMA_EVTENA1 register
- 1 BULONO, BULOFFO, APC EVO & APC EV1 are disabled

TDMA +0184h Receive Interrupt Control Register

TDMA RXCON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	MOD ₅	MOD4	MOD3	MOD ₂	MOD1	MOD0	OD0 RXINTCNT[9:0]									
Type	R/W	R/W	R/W	R/W	R/W	R/W					R/	W				

RXINTCNT TDMA RXWIN interrupt generation interval in quarter bit unit

MOD*n* Mode of Receive Interrupts

- O Single shot mode for the corresponding receive window
- 1 Repetitive mode for the corresponding receive window

TDMA +0188h Baseband Downlink Control Register

TDMA BDLCON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	ADC_ON												ADC	OFF		
Type				R/	W								R/	W		

ADC ON BRXEN to BRXFS setup up time in quarter bit unit.

ADC_OFF BRXEN to BRXFS hold up time in quarter bit unit.

TDMA +018Ch Baseband Uplink Control Register 1

TDMA_BULCON

1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				DAC	ON								DAC	OFF		
Type				R/	W								R/	W		

DAC_ON BTXEN to BTXFS setup up time in quarter bit unit.

DAC_OFF BTXEN to BTXFS hold up time in quarter bit unit.

TDMA +0190h Baseband Uplink Control Register 2

TDMA_BULCON

2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												APC	HYS			
Type												R/	W			

APC_HYS APCEN to BTXEN hysteresis time in quarter bit unit.

Address	Type	Width	Reset Value	Name	Description
+0000h	R	[13:0]	_	TDMA_TQCNT	Read quarter bit counter
+0004h	R/W	[13:0]	0x1387	TDMA_WRAP	Latched Qbit counter reset position
+0008h	R/W	[13:0]	0x1387	TDMA_WRAPIMD	Direct Qbit counter reset position
+000Ch	R/W	[13:0]	0x0000	TDMA_EVTVAL	Event latch position
+0010h	R/W	[13:0]	<u> </u>	TDMA_DTIRQ	DSP software control
+0014h	R/W	[13:0]	_	TDMA_CTIRQ1	MCU software control 1
+0018h	R/W	[13:0]	<u> </u>	TDMA_CTIRQ2	MCU software control 2
+0020h	R/W	[13:0]	_	TDMA_AFC0	The 1 st AFC control
+0024h	R/W	[13:0]	<u> </u>	TDMA_AFC1	The 2 nd AFC control
+0028h	R/W	[13:0]	<u> </u>	TDMA_AFC2	The 3 rd AFC control
+002Ch	R/W	[13:0]	_	TDMA_AFC3	The 4 th AFC control
+0030h	R/W	[13:0]	<u> </u>	TDMA_BDLON0	—— Data serialization of the 1 st RX block
+0034h	R/W	[13:0]	<u> </u>	TDMA_BDLOFF0	Data Serialization of the 1 KA block
+0038h	R/W	[13:0]	<u> </u>	TDMA_BDLON1	—— Data serialization of the 2 nd RX block
+003Ch	R/W	[13:0]	_	TDMA_BDLOFF1	Data Serialization of the 2 KA block
+0040h	R/W	[13:0]	_	TDMA_BDLON2	—— Data serialization of the 3 rd RX block
+0044h	R/W	[13:0]	_	TDMA_BDLOFF2	Data serialization of the 3 KA block
+0048h	R/W	[13:0]	<u> </u>	TDMA_BDLON3	—— Data serialization of the 4 th RX block
+004Ch	R/W	[13:0]	<u> </u>	TDMA_BDLOFF3	Data serialization of the 4 KA block
+0050h	R/W	[13:0]	<u> </u>	TDMA_BDLON4	—— Data serialization of the 5 th RX block
+0054h	R/W	[13:0]	<u> </u>	TDMA_BDLOFF4	Data serialization of the 3 KA block
+0058h	R/W	[13:0]	_	TDMA_BDLON5	—— Data serialization of the 6 th RX block
+005Ch	R/W	[13:0]	_	TDMA_BDLOFF5	Data serialization of the 6 KA block
+0060h	R/W	[13:0]	<u> </u>	TDMA_BULON0	——— Data serialization of the 1 st TX slot
+0064h	R/W	[13:0]	_	TDMA_BULOFF0	Data serialization of the 1 TA slot
+0068h	R/W	[13:0]	_	TDMA_BULON1	—— Data serialization of the 2 nd TX slot
+006Ch	R/W	[13:0]	_	TDMA_BULOFF1	Data serialization of the 2 1 A slot
+0070h	R/W	[13:0]		TDMA_BULON2	—— Data serialization of the 3 rd TX slot
+0074h	R/W	[13:0]		TDMA_BULOFF2	Data Serianzation of the 3 1 A Slot
+0078h	R/W	[13:0]		TDMA_BULON3	—— Data serialization of the 4 th TX slot
+007Ch	R/W	[13:0]		TDMA_BULOFF3	Data Scrianzation of the 4 TA Stot

MEDIATEK					
+0090h	R/W	[13:0]	_	TDMA_APC0	The 1 st APC control
+0094h	R/W	[13:0]	_	TDMA_APC1	The 2 nd APC control
+0098h	R/W	[13:0]	_	TDMA_APC2	The 3 rd APC control
+009Ch	R/W	[13:0]	_	TDMA APC3	The 4 th APC control
+00A0h	R/W	[13:0]	_	TDMA APC4	The 5 th APC control
+00A4h	R/W	[13:0]	_	TDMA APC5	The 6 th APC control
+00A8h	R/W	[13:0]	_	TDMA APC6	The 7 th APC control
+00B0h	R/W	[13:0]	_	TDMA BSI0	BSI event 0
+00B4h	R/W	[13:0]		TDMA BSI1	BSI event 1
+00B8h	R/W	[13:0]	_	TDMA BSI2	BSI event 2
+00BCh	R/W	[13:0]	_	TDMA BSI3	BSI event 3
+00C0h	R/W	[13:0]	_	TDMA BSI4	BSI event 4
+00C4h	R/W	[13:0]	_	TDMA BSI5	BSI event 5
+00C8h	R/W	[13:0]	_	TDMA BSI6	BSI event 6
+00CCh	R/W	[13:0]	_	TDMA BSI7	BSI event 7
+00D0h	R/W	[13:0]		TDMA BSI8	BSI event 8
+00D4h	R/W	[13:0]		TDMA BSI9	BSI event 9
+00D8h	R/W	[13:0]		TDMA BSI10	BSI event 10
+00DCh	R/W	[13:0]		TDMA_BSI11	BSI event 11
+00E0h	R/W	[13:0]		TDMA BSI12	BSI event 12
+00E4h	R/W	[13:0]		TDMA_BSI13	BSI event 13
+00E8h	R/W	[13:0]		TDMA_BSI14	BSI event 14
+00ECh	R/W	[13:0]		TDMA_BSI15	BSI event 15
+0100h	R/W	[13:0]		TDMA BPI0	BPI event 0
+0100h +0104h	R/W	[13:0]		TDMA_BPI1	BPI event 1
+0104h	R/W	[13:0]		TDMA_BPI2	BPI event 2
+0106h	R/W	[13:0]		TDMA_BPI3	BPI event 3
+010Ch	R/W	[13:0]		TDMA_BPI4	BPI event 4
+0110h	R/W	[13:0]		TDMA_BPI5	BPI event 5
+0114h	R/W	[13:0]		TDMA_BPI6	BPI event 6
+011Ch	R/W	[13:0]		TDMA_BPI7	BPI event 7
+011Ch	R/W	[13:0]	<u> </u>	TDMA_BPI8	BPI event 8
+0120h	R/W	[13:0]	<u> </u>	TDMA_BPI9	BPI event 9
+0124h	R/W	[13:0]	_	TDMA_BI19 TDMA BPI10	BPI event 10
+0126h	R/W	[13:0]	<u> </u>	TDMA_BPI11	BPI event 11
+012Ch +0130h	R/W	[13:0]	<u> </u>	TDMA_BPI12	BPI event 12
+0130h +0134h	R/W	[13:0]		TDMA_BPI13	BPI event 13
+0134h	R/W	[13:0]	<u> </u>	TDMA_BPI14	BPI event 14
+0136h	R/W	[13:0]		TDMA_BFI14 TDMA BPI15	BPI event 15
			_		
+0140h	R/W	[13:0]	_	TDMA_BPI16	BPI event 17
+0144h	R/W	[13:0]	_	TDMA_BPI17	BPI event 17
+0148h	R/W	[13:0]		TDMA_BPI18	BPI event 18
+014Ch	R/W	[13:0]		TDMA_BPI19	BPI event 19
+01A0h	R/W	[13:0]		TDMA_BPI20	BPI event 21
+01A4h	R/W	[13:0]	_	TDMA_BPI21	BPI event 21
+01A8h	R/W	[13:0]	-	TDMA_BPI22	BPI event 22
+01ACh	R/W	[13:0]	-	TDMA_BPI23	BPI event 23
+01B0h	R/W	[13:0]	_	TDMA_BPI24	BPI event 24
+01B4h	R/W	[13:0]	_	TDMA_BPI25	BPI event 25
+01C0h	R/W	[13:0]	<u> </u>	TDMA_AUXEV0	Auxiliary ADC event 0

MEDIATEK					
+01C4h	R/W	[13:0]	<u>—</u>	TDMA_AUXEV1	Auxiliary ADC event 1
+0240h	R/W	[13:0]		TDMA_DIGRF_TX0_ON	Dig RF TX ON event0
+0244h	R/W	[13:0]		TDMA_DIGRF_TX1_ON	Dig RF TX ON event1
+0248h	R/W	[13:0]		TDMA_DIGRF_TX2_ON	Dig RF TX ON event2
+024Ch	R/W	[13:0]		TDMA_DIGRF_TX3_ON	Dig RF TX ON event3
+0250h	R/W	[13:0]		TDMA_DIGRF_TX0_OFF	Dig RF TX OFF event0
+0254h	R/W	[13:0]		TDMA_DIGRF_TX1_OFF	Dig RF TX OFF event1
+0258h	R/W	[13:0]		TDMA_DIGRF_TX2_OFF	Dig RF TX OFF event2
+025Ch	R/W	[13:0]		TDMA_DIGRF_TX3_OFF	Dig RF TX OFF event3
+0150h	R/W	[15:0]	0x0000	TDMA_EVTENA0	Event Enable Control 0
+0154h	R/W	[15:0]	0x0000	TDMA_EVTENA1	Event Enable Control 1
+0158h	R/W	[15:0]	0x0000	TDMA_EVTENA2	Event Enable Control 2
+015Ch	R/W	[15:0]	0x0000	TDMA_EVTENA3	Event Enable Control 3
+0160h	R/W	[9:0]	0x0000	TDMA_EVTENA4	Event Enable Control 4
+0164h	R/W	[5:0]	0x0000	TDMA_EVTENA5	Event Enable Control 5
+0170h	R/W	[1:0]	0x0000	TDMA_WRAPOFS	TQ Counter Offset Control Register
+0174h	R/W	[13:0]	0x0000	TDMA_REGBIAS	Biasing Control Register
+0180h	R/W	[3:0]	_	TDMA_DTXCON	DTX Control Register
+0184h	R/W	[15:0]	_	TDMA_RXCON	Receive Interrupt Control Register
+0188h	R/W	[15:0]	_	TDMA_BDLCON	Downlink Control Register
+018Ch	R/W	[15:0]	_	TDMA_BULCON1	Uplink Control Register 1
+0190h	R/W	[7:0]		TDMA_BULCON2	Uplink Control Register 2
					<u> </u>

Table 52 TDMA Timer Register Map

10.2 Slow Clocking Unit

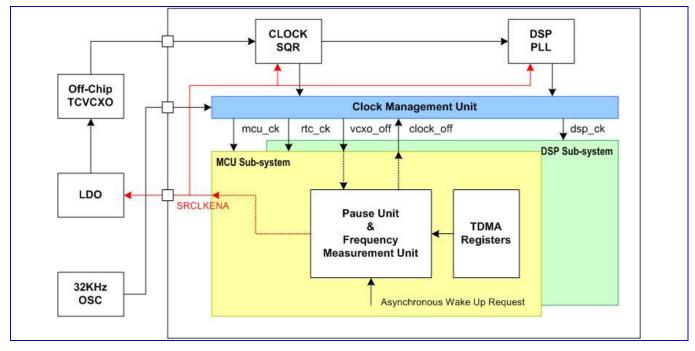


Figure 94 The block diagram of the slow clocking unit

The slow clocking unit is provided to maintain the synchronization to the base-station timing using a 32KHz crystal oscillator while the 13MHz reference clock is switched off. As shown in Figure 94, this unit is composed of frequency measurement unit, pause unit, and clock management unit.

Because of the inaccuracy of the 32KHz oscillator, a frequency measurement unit is provided to calibrate the 32KHz crystal taking the accurate 13MHz source as the reference. The calibration procedure always takes place prior to the pause period.

The pause unit is used to initiate and terminate the pause mode procedure and it also works as a coarse time-base during the pause period.

The clock management unit is used to control the system clock while switching between the normal mode and the pause mode. SRCLKENA is used to turn on/off the clock squarer, DSP PLL and off-chip TCVCXO. CLOCK_OFF signal is used for gating the main MCU and DSP clock, and VCXO_OFF is used as the acknowledgement signal of the CLOCK_OFF request.

10.2.1 Register Definitions

TDMA +0218h Slow clocking unit control register

SM_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name															PAUSE_STA RT	FM_STAR T
Type															W	W
Reset															0	0

FM_START Initiate the frequency measurement procedure

PAUSE_STARTInitiate the pause mode procedure at the next timer wrap position

TDMA +0220h Slow clocking unit status register

SM STA

Bit	15	14	13	12	11	10	9	8
Name								PAUSE_ABO RT
Type								R
Bit	7	6	5	4	3	2	1	0
Name	SETTLE_CP	PAUSE_CPL	PAUSE_INT	PAUSE_RQS T			FM_CPL	FM_RQST
Туре	R	R	R	R			R	R

FM_RQST Frequency measurement procedure is requested

FM_CPL Frequency measurement procedure is completed

PAUSE_RQST Pause mode procedure is requested

PAUSE_INT Asynchronous wake up from pause mode

PAUSE_CPL Pause period is completed
SETTLE CPL Settling period is completed

PAUSE_ABORT Pause mode is aborted because of the reception of interrupt prior to entering pause mode

TDMA +022Ch Slow clocking unit configuration register

SM CNF

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											MSDC	RTC	EINT	KP	SM	FM
Type											R/W	R/W	R/W	R/W	R/W	R/W
Reset											0	0	0	0	1	1

FM Enable interrupt generation upon completion of frequency measurement procedure

SM Enable interrupt generation upon completion of pause mode procedure

KP Enable asynchronous wake-up from pause mode by key press

EINT Enable asynchronous wake-up from pause mode by external interrupt

RTC Enable asynchronous wake-up from pause mode by real time clock interrupt

MSDC Enable asynchronous wake-up from pause mode by memory card insertion interrupt

Address	Type	Width	Reset Value	Name	Description
+0200h	R/W	[2:0]	_	SM_PAUSE_M	MSB of pause duration
+0204h	R/W	[15:0]	_	SM_PAUSE_L	16 LSB of pause duration
+0208h	R/W	[13:0]	_	SM_CLK_SETTLE	Off-chip VCXO settling duration
+020Ch	R	[2:0]	_	SM_FINAL_PAUSE_M	MSB of final pause count
+0210h	R	[15:0]	_	SM_FINAL_PAUSE_L	16 LSB of final pause count
+0214h	R	[13:0]	_	SM_QBIT_START	TQ_ COUNT value at the start of the pause
+0218h	W	[1:0]	0x0000	SM_CON	SM control register
+021Ch	R	[7:3,1:0]	0x0000	SM_STA	SM status register
+0220h	R/W	[15:0]	_	SM_FM_DURATION	32KHz measurement duration
+0224h	R	[9:0]	_	SM_FM_RESULT_M	10 MSB of frequency measurement result
+0228h	R	[15:0]	_	SM_FM_RESULT_L	16 LSB of frequency measurement result
+022Ch	R/W	[4:0]	0x0000	SM_CNF	SM configuration register

11 Power, Clocks and Reset

This chapter describes the power, clock and reset management functions provided by MT6225. Together with Power Management IC (PMIC), MT6225 offers both fine and coarse resolutions of power control through software programming. With this efficient method, the developer can turn on selective resources accordingly in order to achieve optimized power consumption. The operating modes of MT6225 as well as main power states provided by the PMIC are shown in **Figure 95**.

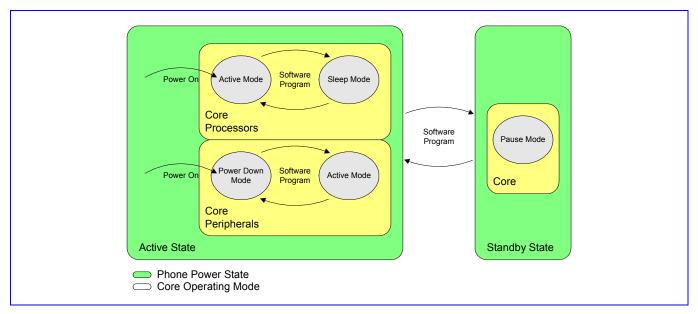


Figure 95 Major Phone Power States and Operating Modes for MT6225 based terminal

11.1 **B2PSI**

11.1.1 General Description

A 3-wire B2PSI interface is used for connecting to power management IC (PMIC). This bi-directional serial bus interface allows baseband to write to or read from PMIC. The bus protocol utilizes a 16-bit format. B2PSICK is the serial bus clock and is driven by the master. B2PSIDAT is the serial data; master or slave can drive it. B2PSICS is the bus selection signal. Once the B2PSICS goes LOW, baseband starts to transfer the 4 register bits followed by a read/write bit, then waits 3 clock cycles for the PMIC B2PSI state machine to decode the operation for the next 8 data bits. The state machine should count 16 clocks to complete the data transfer.

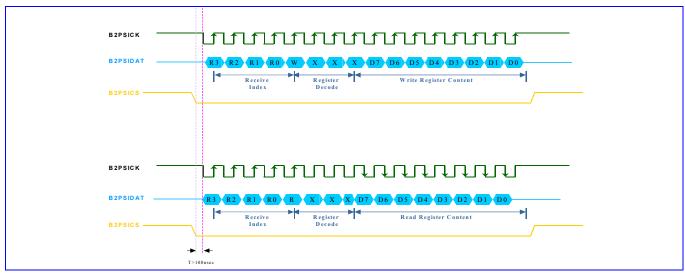


Figure 96 B2PSI bus timing

11.1.2 Register Definitions

B2PSI+0000h B2PSI data register

B2PSI_DATA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		B2PSI_DATA [15:0]														
Type		R/W														
Reset		0														

B2PSI_DATA The B2PSI DATA format contains 4 bit register + 3 bit do not care + write / read bit + 8 bit data.

- 0 Read operation
- 1 Write operation

To prevent a writing error, B2PSI DATA must be set to 8216h before the actual data write.

B2PSI +0008h B2PSI baud rate divider register

B2PSI DIV

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	B2PSI _DIV [15:0]															
Type								R/	W							
Reset																

B2PSI_DIV B2PSI clock rate divisor. B2PSICK = system clock rate / div.

B2PSI+0010h B2PSI status register

B2PSI_STAT

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name															WRIT E_SU CCES S	READ _REA DT
Type															RC	RC
Reset															0	0

READ_READY Read data ready.

- Read data is not ready yet.
- 1 Read data is ready. The bit is cleared by reading B2PSI_STAT register or if B2PSI initializes a new transmit.

WRITE_SUCCESS B2PSI write successfully.

- **0** B2PSI write is not finished yet.
- 1 B2PSI write has finished. The bit is cleared by reading B2PSI_STAT register or if B2PSI initializes a new transmit.

B2PSI+0014h B2PSI CS to CK time register

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														B2PSI_TIME		
Type														R/W		
Reset														0		

B2PSI_TIME The time interval that first B2PSICK is started after the B2PSICS is active low. Time interval = 1/system clock * B2PSI_time.

11.2 Clocks

There are two major time bases in the MT6225. For the faster one is the 13 MHz clock originating from an off-chip temperature-compensated voltage controlled oscillator (TCVCXO) that can be either 13MHz or 26MHz. This signal is the input from the SYSCLK pad then is converted to the square-wave signal. The other time base is the 32768 Hz clock generated by an on-chip oscillator connected to an external crystal. **Figure 97** shows the clock sources as well as their utilizations inside the chip.

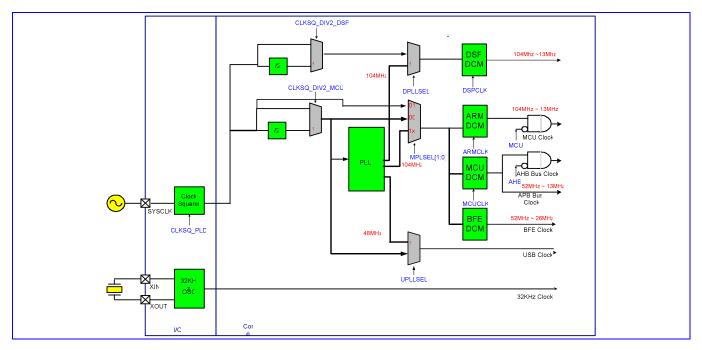


Figure 97 Clock distributions inside the MT6225.

11.2.1 32.768 KHz Time Base

The 32768 Hz clock is always running. It's mainly used as the time base of the Real Time Clock (RTC) module, which maintains time and date with counters. Therefore, both the 32768Hz oscillator and the RTC module is powered by separate voltage supplies that shall not be powered down when the other supplies do.

In low power mode, the 13 MHz time base is turned off, so the 32768 Hz clock shall be employed to update the critical TDMA timer and Watchdog Timer. This time base is also used to clocks the keypad scanner logic.

11.2.2 13 MHz Time Base

One 1/2-dividers for PLL existing to allow using 26 or 13 MHz TCVCXO.

One phase-locked loops (PLL) to generate 624Mhz clock output, then a frequency divider futher divide 6, 6, 13 to generate 104Mhz, 104Mhz, 48Mhz for three primary clocks, DSP_CLOCK, MCU_CLOCK and USB_CLOCK, respectively. This three primary clocks then feed to DSP Clock Domain and MCU Clock Domain and USB, respectively. The PLL require no off-chip components for operations and can be turn off in order to save power. After power-on, the PLLs are off by default and the source clock signal is selected through multiplexers. The software shall take cares of the PLL lock time while changing the clock selections. The PLL and usages are listed below.

PLL supplies three clock source

DSP system clock, *DSP_CLOCK*. The outputted 104MHz clock is connected to DSP DCM (dynamic clock manager) for dynamically adjusting clock rate by digital clock divider.

MCU system clock, MCU_CLOCK, which paces the operations of the MCU cores, MCU memory system, and MCU peripherals as well. The outputted 104MHz clock is connected to ARM DCM and MCU DCM for dynamically adjusting clock rate by digital clock divider.

USB system clock, USB CLOCK. The 48MHz is sent to USB module for its operation.

Note that PLL need some time to become stable after being powered up. The software shall take cares of the PLL lock time before switching them to the proper frequency. Usually, a software loop longer than the PLL lock time is employed to deal with the problem.

For power management, the MCU software program may stop MCU Clock by setting the Sleep Control Register. Any interrupt requests to MCU can pause the sleep mode, and thus MCU return to the running mode.

AHB also can be stop by setting the Sleep Control Register. However the behavior of AHB in sleep mode is a little different from that of MCU. After entering Sleep Mode, it can be temporarily waken up by any "hreq" (bus request), and then goes back to sleep automatically after all "hreqs" de-assert. Any transactions can take place as usual in sleep mode, and it can save power while there is no transaction on it. However the penalty is losing a little system efficiency for switching on and off bus clock, but the impact is small.

11.2.3 Dynamic Clock Switch of MCU Clock

Dynamic Clock Manager is implemented to allow MCU and DSP switching clock dynamically without any jitter, and enabling signal drift, and system can operate stably during any clock rate switch.

Please note that PLL must be enabled and the frequency shall be set as 624MHz, therefore the required MCU/DSP/USB clocks can be generated from 624MHz. Before switching to 52MHz clock rate, the clock from PLL DIV2 will feed through dynamic clock manager (DCM) directly. That means if PLL DIV2 is enabled, the internal clock rate is the half of SYSCLK. Contrarily, the internal clock rate is identical to SYSCLK.

However, the settings of some hardware modules is required to be changed before or after clock rate change. Software has the responsibility to change them at proper timing. The following table is list of hardware modules needed to be changed their setting during clock rate change.

Module Name	Programming Sequence
EMI	 Low clock speed -> high clock speed Changing wait state before clock change. New wait state will not take effect until current EMI access is complete. Software should insert a period of time before switching clock. High clock speed -> low clock speed Changing wait state after clock change.
NAND	 Low clock speed -> high clock speed Changing wait state before clock change. New wait state will not take effect until current EMI access is complete. Software should insert a period of time before switching clock. High clock speed -> low clock speed Changing wait state after clock change.
LCD	Change wait state while LCD in IDLE state.

Table 53 Programming sequence during clock switch

11.2.4 Register Definitions

CONFG+0100h PLL Frequency Register

PLL

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		Q_I	PLL		CALI					UPLL SEL	DPLL SEL	MPL	LSEL	PLLT ME	PLLVC	OSEL
Type		R/	W		R/W					R/W	R/W	R/	W	R/W	R/	W
Reset		()			0			0	0	0	()	0	0	0

PLLVCOSEL Selects VCO in PLL frequency for PLL debug purpose. Default value is 0x0.

PLLTME PLL test mode Enable

- O Disable
- 1 Enables

MPLLSEL Select MCU Clock source. Using this mux to gate out unstable clock output from PLL after system boot up

- **00** PLL bypassed, using CLK from CLKSQ, default value after chip power up.
- **01** PLL bypassed, using CLK from SYSCLK
- 10 Using PLL Clock for MCU
- 11 Reserved

DPLLSEL Select DSP Clock source. Using this mux to gate out unstable clock output from PLL after system boot up

- O PLL bypassed, using CLK from CLKSQ
- 1 Using PLL Clock for DSP

UPLLSEL Select USB Clock source. Using this mux to gate out unstable clock output from PLL after system boot up

- O PLL bypassed, using CLK from CLKSQ
- Using PLL Clock for USB

RST Reset Control of PLL

Normal Operation

1 Reset the PLL

CALI Calibration Control for PLL

Q_PLL Select source of PLL output clock when in test

CONFG+110h Clock Control Register

CLK_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												DSP_ EXTC K	USB_ EXTC K	CLKS Q_PL D	CLKS Q_DIV 2_MC U	CLKS Q_DIV 2_DS P
Type												R/W	R/W	R/W	R/W	R/W
Reset												0	0	0	0	0

CLKSQ_DIV2_DSP Control the clock divider for DSP clock domain

- O Divider bypassed
- 1 Divider not bypassed

CLKSQ_DIV2_MCU Control the x2 clock divider for MCU clock domain

- O Divider bypassed
- 1 Divider not bypassed

CLKSQ_PLD Pull Down Control

- 0 Disable
- 1 Enables

USB_EXTCK Use external USB clock source.

- Not use external clock.
- 1 Use external clock.

DSP EXTCK Use external DSP clock source.

- Not use external clock.
- Use external clock.

CONFG+114h Sleep Control Register

SLEEP_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														DSP	AHB	MCU
Type														WO	WO	WO
Reset														0	0	0

MCU Stop the MCU Clock to force MCU Processor entering sleep mode. MCU clock will be resumed as long as there comes an interrupt request or system is reset.

- 0 MCU Clock is running
- 1 MCU Clock is stopped

AHB Stop the AHB Bus Clock to force the entire bus entering sleep mode. AHB clock will be resumed as long as there comes an interrupt request or system is reset.

- O AHB Bus Clock is running
- 1 AHB Bus Clock is stopped

DSP Stop the DSP Clock.

- O DSP Bus Clock is running
- 1 DSP Bus Clock is stopped

CONFG+0118h MCU Clock Control Register

MCUCLK_CON

Bit	15	14	13	12	11	ARM_FSEL				6	5	4	3	2	1	0
Name					ARM_FSEL			SRCC LK					MCU_	FSEL		
Type						R/W								R/	W	
Reset						3	3		1					(3	

MCU_FSEL MCU clock frequency selection. This control register is used to control the output clock frequency of MCU Dynamic Clock Manager. The clock frequency is from 13MHz to 52MHz. The waveform of the output clock is shown in Fig. 98.

- **0** 13MHz
- 1 26MHz
- 2 39MHz
- **3** 52MHz

Others reserved

When MCU Clock Source bypass PLL (MPLL_SEL[1]==0), the output frequency is controlled by SRCCLK, CLKSQ_DIV2_MCU, MPLL_SEL[0] and MCU_FSEL[0]

SRCCLK CLKSQ_DIV2_MCU MPLL_SEL[0] MCU_FSEL[0]

0	0	X	X	13Mhz
1	1	0	0	13Mhz
1	1	1	1	26Mhz

Other illegal

SRCCLK off-chip temperature-compensated voltage controlled oscillator (TCVCXO) frequency identifier.

- 0 13MHz
- 1 26MHz

ARM_FSEL ARM clock frequency selection. This control register is used to control the output clock frequency of ARM Dynamic Clock Manager. The clock frequency is from 13MHz to 104MHz.

- 0 13MHz
- 1 26MHz
- **2** 39MHz
- **3** 52MHz
- 4 65MHz
- 5 78MHz
- 6 91MHz
- **7** 104MHz

Others reserved

Please note that the clock period of 39MHz is not uniform. The shortest period of 39MHz clock is the same as the period of 52MHz. As a result, the wait states of external interfaces, such as EMI, NAND, and so on, have to be configured based on 52MHz timing. Therefore, the MCU performance executing in external memory at 39MHz may be worse than at 26MHz. 65Mhz, 78MHz and 91MHz are not uniform clocks, either.

Also note that the maximum latency of clock switch is 8 104MHz-clock periods. Software provides at least 8T locking time after clock switch command.

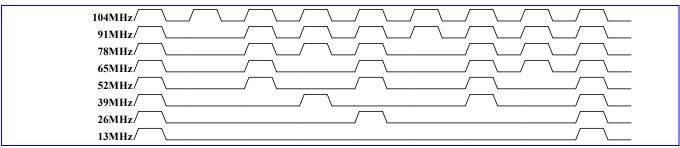
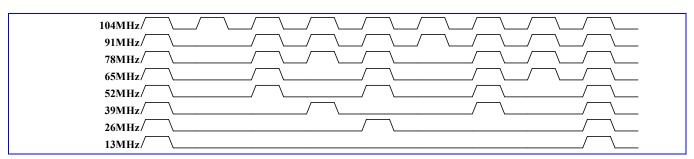


Figure 99 Output of Dynamic Clock Manager

CONFG+011C

h

DSP Clock Control Register


DSPCLK_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														DSP_	FSEL	
Type														R/	W	
Reset														3	3	

DSP_FSEL DSP clock frequency selection. This control register is used to control the output clock frequency of DSP Dynamic Clock Managers. The clock frequency is from 13MHz to 104MHz. Note that 39MHz, 65MHz, 78MHz, and 91MHz are not a uniform period clock rate.

- 0 13MHz
- 1 26MHz
- 2 39MHz
- **3** 52MHz
- 4 65MHz
- 5 78MHz
- **6** 91MHz
- 7 104MHz

Others reserved

11.3 Reset Generation Unit (RGU)

Figure 100 shows the reset scheme used in MT6225. MT6225 provides three kinds of resets: hardware reset, watchdog reset, and software reset.

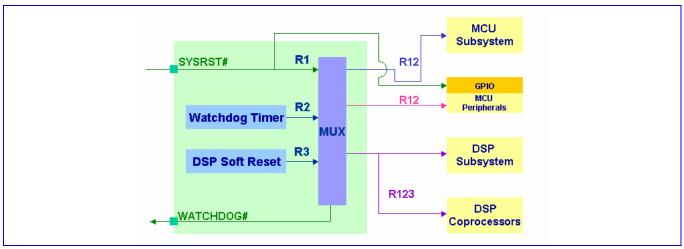


Figure 100 Reset Scheme Used in MT6225

11.3.1 General Description

11.3.1.1 Hardware Reset

This reset is input through the SYSRST# pin, which is driven low during power-on. The hardware reset has a global effect on the chip: all digital and analog circuits are initialized, except the Real Time Clock module. The initial states of the MT6225 sub-blocks are as follows:.

- All analog circuits are turned off.
- All PLLs are turned off and bypassed. The 13 MHz system clock is the default time base.
- Special trap states in GPIO.

11.3.1.2 Watchdog Reset

A watchdog reset is generated when the Watchdog Timer expires: the MCU software failed to re-program the timer counter in time. This situation is typically induced by abnormal software execution, which can be aborted by a hardwired watchdog reset. Hardware blocks that are affected by the watchdog reset are:

- MCU subsystem,
- · DSP subsystem, and
- External components (trigged by software).

11.3.1.3 Software Resets

Software resets are local reset signals that initialize specific hardware components. For example, if hardware failures are detected, the MCU or DSP software may write to software reset trigger registers to reset those specific hardware modules to their initial states.

The following modules have software resets.

• DSP Core

• DSP Coprocessors

11.3.2 Register Definitions

RGU +0000h Watchdog Timer Control Register

WDT MODE

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				KEY	[7:0]							AUTO -REST ART	IRQ	EXTE N	EXTP OL	ENAB LE
Type												R/W	R/W	R/W	R/W	R/W
Reset			•				•					0	0	0	0	1

ENABLE Enables the Watchdog Timer.

- **0** Disables the Watchdog Timer.
- 1 Enables the Watchdog Timer.

EXTPOL Defines the polarity of the external watchdog pin.

- Active low.
- 1 Active high.

EXTEN Specifies whether or not to generate an external watchdog reset signal.

- O The watchdog does not generate an external watchdog reset signal.
- 1 If the watchdog counter reaches zero, an external watchdog signal is generated.

IRQ Issues an interrupt instead of a Watchdog Timer reset. For debug purposes, RGU issues an interrupt to the MCU instead of resetting the system.

- O Disable.
- 1 Enable.

AUTO-RESTART Restarts the Watchdog Timer counter with the value of WDT_LENGTH while task ID is written into Software Debug Unit.

- **0** Disable. The counter restarts by writing KEY into the WDT RESTART register.
- 1 Enable. The counter restarts by writing KEY into the WDT_RESTART register or by writing task ID into the software debug unit.

KEY Write access is allowed if KEY=0x22.

RGU +0004h Watchdog Time-Out Interval Register

WDT_LENGTH

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					TIMI	EOUT[1	0:0]						K	EY[4:0]		
Type						WO										
Reset					111_	1111_1	111b									

KEY Write access is allowed if KEY=08h.

TIMEOUT The counter is restarted with {TIMEOUT [10:0], 1_1111_1111b}. Thus the Watchdog Timer time-out period is a multiple of 512*T_{32k}=15.6ms.

RGU +0008h Watchdog Timer Restart Register

WDT RESTART

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								KEY[15:0]							
Type																
Reset																

KEY Restart the counter if KEY=1971h.

RGU +000Ch Watchdog Timer Status Register

WDT STA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	WDT	SW_W DT														
Type	RO	RO														
Reset	0	0														

WDT Indicates the cause of the watchdog reset.

- Reset not due to Watchdog Timer.
- 1 Reset because the Watchdog Timer time-out period expired.

SW_WDT Indicates if the watchdog was triggered by software.

- Reset not due to software-triggered Watchdog Timer.
- 1 Reset due to software-triggered Watchdog Timer.

NOTE: A system reset does not affect this register. This bit is cleared when the WTU_MODE register ENABLE bit is written.

SW_PERIPH_RS

TN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		DAMR ST	USBR ST									KI	ΕΥ			
Type		R/W	R/W													
Reset		0	0								•	•	•	•		

KEY Write access is allowed if KEY=37h.

DMARST Reset the DMA peripheral.

O No reset.

1 Invoke a reset.

USBRST Reset the USB.

O No reset.

1 Invoke a reset.

RGU +0014h DSP Software Reset Register

SW_DSP_RSTN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	RST															
Type	R/W															
Reset																

RST Controls the DSP System Reset Control.

- No reset.
- 1 Invoke a reset.

WDT_RSTINTRE

VAL

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					LENGTH[11:0]											
Type										R/	W					

RGU +0018h Watchdog Timer Reset Signal Duration Register

Reset			FFFh

LENGTH This register indicates the reset duration when Watchdog Timer times out. However, if the WDT_MODE register IRQ bit is set to 1, an interrupt is issued instead of a reset.

RGU+001Ch Watchdog Timer Software Reset Register

WDT SWRST

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								KEY[15:0]							
Type																
Reset																

Software-triggered Watchdog Timer reset. If the register content matches the KEY, a watchdog reset is issued. However, if the WDT MODE register IRQ bit is set to 1, an interrupt is issued instead of a reset.

KEY 1209h

11.4 Software Power Down Control

In addition to have Pause Mode at Standby State, the software program can also put each peripherals independently in Power Down Mode at Active State by gating their clock off. The typical logic implemented is described as **Figure 101**. For all these configuration bits, 1 means that the function is Power Down Mode and 0 means that it is in the Active Mode.

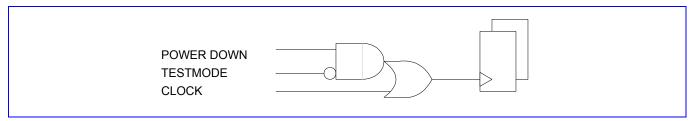


Figure 101 Power Down Control at Block Level

11.4.1 Register Definitions

CONFG+300h Power Down Control 0 Register

PDN CON0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	DSP_ DIV2		PLL	MCU_ DIV2	CLKS Q					IRDB G			WAVE TABL E	GCU	USB	DMA
Type	R/W		R/W	R/W	R/W					RW			R/W	R/W	R/W	R/W
Reset	1		1	1	0					1			1	1	1	1

DMA Controls the DMA Controller Power Down
USB Controls the USB Controller Power Down
GCU Controls the GCU Controller Power Down
WAVETABLE Controls the Wavetable Power Down
IRDBG Controls the IRDBG Power Down

CLKSQ Controls the Clock squarer Power Down
MCU_DIV2 Controls the MCU DIV2 Power Down

PLL Controls the PLL Power Down

DSP_DIV2 Controls the DSP DIV2 Power Down

CONFG +304h Power Down Control 1 Register

PDN_CON1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	IRDA	UART 3	SPI	NFI		PWM2	MSDC	UART 2	LCD	ALTE R	PWM	SIM	UART 1	GPIO	KP	GPT
Type	RW	RW	R/W	R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1		1	1	1	1	1	1	1	0	1	1	1

GPT Controls the General Purpose Timer Power Down

KP Controls the Keypad Scanner Power Down

GPIO Controls the GPIO Power Down

UART1 Controls the UART1 Controller Power Down

SIM Controls the SIM Controller Power Down

PWM Controls the PWM Generator Power Down

ALTER Controls the Alerter Generator Power Down

LCD Controls the Serial LCD Controller Power Down

UART2 Controls the UART2 Controller Power Down

MSDC Controls the MS/SD Controller Power Down

PWM2 Controls the PWM2 Generator Power Down

NFI Controls the NAND FLASH Interface Power Down

SPI Controls the Serial Port Interface Power Down

UART3 Controls the UART3 Controller Power Down

IRDA Controls the IrDA Framer Power Down

CONFG +308h Power Down Control 2 Register

PDN_CON2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GMSK	BBRX	I ² C	AAFE	DIV	GCC	BFE	VAFE	AUXA D	FCS	APC	AFC	BPI	BSI	RTC	TDMA
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

TDMA Controls the TDMA Power Down

RTC Controls the RTC Power Down

BSI Controls the BSI Power Down. This control will not be updated until both tdma evtval and qbit en are asserted.

BPI Controls the BPI Power Down. This control will not be updated until both tdma evtval and qbit en are asserted.

AFC Controls the AFC Power Down. This control will not be updated until both tdma evtval and qbit en are asserted.

APC Controls the APC Power Down. This control will not be updated until both tdma evtval and qbit en are asserted.

FCS Controls the FCS Power Down

AUXADControls the AUX ADC Power Down

VAFE Controls the Audio Front End of VBI Power Down

BFE Controls the Base-Band Front End Power Down

GCU Controls the GCU Power Down

DIV Controls the Divider Power Down

AAFE Controls the Audio Front End of MP3 Power Down

Controls the I²C Power Down

BBRX Controls the BB RX Power Down

GMSK Controls the GMSK Power Down

CONFG +30Ch Power Down Control 3 Register

PDN_CON3

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				ISP	RESZ											ICE
Type				R/W	R/W											R/W
Reset				1	1											1

ICE Enables the debug feature of the ARM7EJS core. It controls the DBGEN pin of the ICEBreaker.

RESZ Controls the Image Resizer Power Down

ISP Controls the Image Signal Processor Power Down

CONFG+0310h Power Down Set 0 Register

PDN_SET0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	DSP_ DIV2		PLL	MCU_ DIV2	CLKS Q					IRDB G			WAVE TABL E	GCU	USB	DMA
Type	W1S		W1S	W1S	W1S					W1S			W1S	W1S	W1S	W1S

CONFG+0314h Power Down Set 1 Register

PDN_SET1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	IRDA	UART 3	SPI	NFI		PWM2	MSDC	UART 2	LCD	ALTE R	PWM	SIM	UART 1	GPIO	KP	GPT
Type	W1S	W1S	W1S	W1S		W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S

CONFG+0318h Power Down Set 2 Register

PDN_SET2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GMSK	BBRX	SCCB	AAFE	DIV	GCC	BFE	VAFE	AUXA D	FCS	APC	AFC	BPI	BSI	RTC	TDMA
Type	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S

CONFG+031C

h

Power Down Set 3 Register

PDN_SET3

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				ISP	RESZ											ICE
Type				W1S	W1S											W1S

These registers are used to individually set power down control bit. Only the bits set to 1 are in effect, and these power down control bits will set to 1. Else the other bits keep original value.

EACH BIT Set the Associated Power Down Control Bit to 1.

0 no effect

1 Set corresponding bit to 1

CONFG+0320h Power Down Clear 0 Register

PDN_CLR0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	DSP_ DIV2		PLL	MCU_ DIV2	CLKS Q					IRDB G			WAVE TABL E	GCU	USB	DMA
Type	W1C		W1C	W1C	W1C					W1C			W1C	W1C	W1C	W1C

CONFG+0324h Power Down Clear 1 Register

PDN_CLR1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	IRDA	UART 3	SPI	NFI		PWM2	MSDC	UART 2	LCD	ALTE R	PWM1	SIM	UART 1	GPIO	KP	GPT
Type	W1C	W1C	W1C	W1C		W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C

CONFG+0328h Power Down Clear 2 Register

PDN_CLR2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GMSK	BBRX	SCCB	AAFE	DIV	GCC	BFE	VAFE	AUXA D	FCS	APC	AFC	BPI	BSI	RTC	TDMA
Type	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C

CONFG+032C

h

Power Down Clear 3 Register

PDN_CLR3

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				ISP	RESZ											ICE
Type				W1C	W1C											W1C

These registers are used to individually Clear power down control bit. Only the bits set to 1 are in effect, and these power down control bits will set to 0. Else the other bits keep original value.

EACH BIT Clear the Associated Power Down Control Bit.

0 no effect

1 Set corresponding bit to 0

12 Analog Front-end & Analog Blocks

12.1 General Description

To communicate with analog blocks, a common control interface for all analog blocks is implemented. In addition, there are some dedicated interfaces for data transfer. The common control interface translates APB bus write and read cycle for specific addresses related to analog front-end control. During writing or reading of any of these control registers, there is a latency associated with transferring of data to or from the analog front-end. Dedicated data interface of each analog block is implemented in the corresponding digital block. The Analog Blocks includes the following analog function for complete GSM/GPRS base-band signal processing:

- 1. Base-band RX: For I/Q channels base-band A/D conversion
- 2. Base-band TX: For I/Q channels base-band D/A conversion and smoothing filtering, DC level shifting
- 3. *RF Control*: Two DACs for automatic power control (APC) and automatic frequency control (AFC) are included. Their outputs are provided to external RF power amplifier and VCXO), respectively.
- 4. Auxiliary ADC: Providing an ADC for battery and other auxiliary analog function monitoring
- Audio mixed-signal blocks: It provides complete analog voice signal processing including microphone amplification, A/D conversion, D/A conversion, earphone driver, and etc. Besides, dedicated stereo D/A conversion and amplification for audio signals are included).
- 6. *Clock Generation*: A clock squarer for shaping system clock, and three PLLs that provide clock signals to DSP, MCU, and USB units are included
- 7. XOSC32: It is a 32-KHz crystal oscillator circuit for RTC application Analog Block Descriptions

12.1.1 BBRX

12.1.1.1 Block Descriptions

The receiver (RX) performs base-band I/Q channels downlink analog-to-digital conversion:

- 1. Analog input multiplexer: For each channel, a 4-input multiplexer that supports offset and gain calibration is included.
- 2. A/D converter: Two 14-bit sigma-delta ADCs perform I/Q digitization for further digital signal processing.

12.1.1.2 Functional Specifications

The functional specifications of the base-band downlink receiver are listed in the following table.

Symbol	Parameter	Min	Typical	Max	Unit
N	Resolution		14		Bit
FC	Clock Rate		26		MHz
FS	Output Sampling Rate		13/12		MSPS
	Input Swing When GAIN='0'		0.8*AVDD		Vpk
			0.4*AVDD		Vpk

	When GAIN='1'				
OE	Offset Error		+/- 10		mV
FSE	Full Swing Error		+/- 30		mV
	I/Q Gain Mismatch			0.5	dB
SINAD	Signal to Noise and Distortion Ratio - 45kHz sine wave in [0:90] kHz bandwidth - 145kHz sine wave in [10:190] kHz bandwidth	65 65			dB dB
ICN	Idle channel noise - [0:90] kHz bandwidth - [10:190] kHz bandwidth			-74 -70	dB dB
DR	Dynamic Range - [0:90] kHz bandwidth - [10:190] kHz bandwidth	74 70			dB dB
RIN	Input Resistance	75			kΩ
DVDD	Digital Power Supply	1.6	1.8	2.0	V
AVDD	Analog Power Supply	2.5	2.8	3.1	V
T	Operating Temperature	-20		80	$^{\circ}\!\mathbb{C}$
	Current Consumption Power-up Power-Down		5 5		mA μA

Table 54 Base-band Downlink Specifications

12.1.2 BBTX

12.1.2.1 Block Descriptions

The transmitter (TX) performs base-band I/Q channels up-link digital-to-analog conversion. Each channel includes:

- 1. 10-Bits D/A Converter: It converts digital GMSK modulated signals to analog domain. The input to the DAC is sampled at 4.33-MHz rate with 10-bits resolution.
- 2. *Smoothing Filter:* The low-pass filter performs smoothing function for DAC output signals with a 350-kHz 2nd-order Butterworth frequency response.

12.1.2.2 Function Specifications

The functional specifications of the base-band uplink transmitter are listed in the following table.

Symbol	Parameter	Min	Typical	Max	Unit
N	Resolution		10		Bit
FS	Sampling Rate		4.33		MSPS
SINAD	Signal to Noise and Distortion Ratio	57	60		dB
	Output Swing	0.18*AVDD		0.89*AVDD	V
VOCM	Output CM Voltage	0.34*AVDD	0.5*AVDD	0.62*AVDD	V

	Output Capacitance			20	PF
	Output Resistance	10			ΚΩ
DNL	Differential Nonlinearity		+/- 0.5		LSB
INL	Integral Nonlinearity		+/- 1.0		LSB
OE	Offset Error		+/- 15		mV
FSE	Full Swing Error		+/- 30		mV
FCUT	Filter –3dB Cutoff Frequency	300	350	400	KHz
ATT	Filter Attenuation at 100-KHz 270-KHz 4.33-MHz	0.1 2.2 46.4	0.0 1.3 43.7	0.0 0.8 41.4	dB dB dB
	I/Q Gain Mismatch		+/- 0.5		dB
	I/Q Gain Mismatch Correction Range	-1.18		+1.18	dB
DVDD	Digital Power Supply	1.6	1.8	2.0	V
AVDD	Analog Power Supply	2.5	2.8	3.1	V
T	Operating Temperature	-20		80	$^{\circ}\!\mathbb{C}$
	Current Consumption Power-up Power-Down		5 5		mA μA

Table 55 Base-band Uplink Transmitter Specifications

12.1.3 AFC-DAC

12.1.3.1 Block Descriptions

As shown in the following figure, together with a 2nd-oder digital sigma-delta modulator, AFC-DAC is designed to produce a single-ended output signal at AFC pin. AFC pin should be connected to an external 1st-order R-C low pass filter to meet the 13-bits resolution (DNL) requirement².

The AFC_BYP pin is the mid-tap of a resistor divider inside the chip to offer the AFC output common-mode level. Nominal value of this common-mode voltage is half the analog power supply, and typical value of output impedance of AFC_BYP pin is about $21k\Omega$. To suppress the noise on common mode level, it is suggested to add an external capacitance between AFC_BYP pin and ground. The value of the bypass capacitor should be chosen as large as possible but still meet the settling time requirement set by overall AFC algorithm³.

² DNL performance depends on external output RC filter bandwidth: the narrower the bandwidth, the better the DNL. Thus, there exists a tradeoff between output setting speed and DNL performance

³ AFC_BYP output impedance and bypass capacitance determine the common-mode settling RC time constant. Insufficient common-mode settling will affect the INL performance. A typical value of 1nF is suggested.

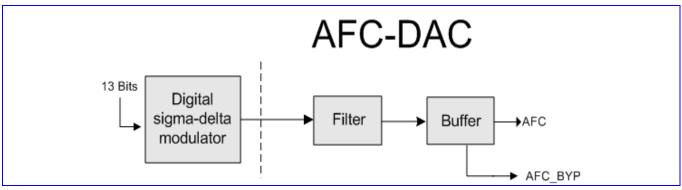


Figure 102 Block diagram of AFC-DAC

12.1.3.2 Functional Specifications

The following table gives the electrical specification of AFC-DAC.

Symbol	Parameter	Min	Typical	Max	Unit
N	Resolution		13		Bit
FS	Sampling Rate		6500		KHz
DVDD	Digital Power Supply	1.6	1.8	2.0	V
AVDD	Analog Power Supply	2.6	2.8	3.1	V
T	Operating Temperature	-20		80	$^{\circ}\mathbb{C}$
	Current Consumption Power-up Power-Down		1.2	1	mA μA
	Output Swing		0.75*AVDD		V
	Output Resistor (in AFC output RC network)	1			ΚΩ
DNL	Differential Nonlinearity		+1/-1		LSB
INL	Integral Nonlinearity		+4.0/-4.0		LSB

Table 56 Functional specification of AFC-DAC

12.1.4 APC-DAC

12.1.4.1 Block Descriptions

The APC-DAC is a 10-bits DAC with output buffer aimed for automatic power control. Here blow are its analog pin assignment and functional specification tables.

12.1.4.2 Function Specifications

Symbol	Parameter	Min	Typical	Max	Unit
N	Resolution		10		Bit
FS	Sampling Rate			1.0833	MSPS
SINAD	Signal to Noise and Distortion Ratio		50		dB

	(10-KHz Sine with 1.0V Swing & 100-KHz BW)				
	99% Settling Time (Full Swing on Maximal Capacitance)			5	μS
	Output Swing			AVDD-0.2	V
	Output Capacitance			200	pF
	Output Resistance	10			ΚΩ
DNL	Differential Nonlinearity		+/- 0.5		LSB
INL	Integral Nonlinearity		+/- 1.0		LSB
OE	Offset Error		+/- 10		mV
FSE	Full Swing Error		+/- 10		mV
DVDD	Digital Power Supply	1.6	1.8	2.0	V
AVDD	Analog Power Supply	2.5	2.8	3.1	V
Т	Operating Temperature	-20		80	$^{\circ}\!\mathbb{C}$
	Current Consumption		600		μΑ
	Power-up		1		μΑ
	Power-Down				

Table 57 APC-DAC Specifications

12.1.5 Auxiliary ADC

12.1.5.1 Block Descriptions

The auxiliary ADC includes the following functional blocks:

- 1. Analog Multiplexer: The analog multiplexer selects signal from one of the seven auxiliary input pins. Real word message to be monitored, like temperature, should be transferred to the voltage domain.
- 2. 10 bits A/D Converter: The ADC converts the multiplexed input signal to 10-bit digital data.

12.1.5.2 Function Specifications

The functional specifications of the auxiliary ADC are listed in the following table.

Symbol	Parameter	Min	Typical	Max	Unit
N	Resolution		10		Bit
FC	Clock Rate	0.1	1.0833	5	MHz
FS	Sampling Rate @ N-Bit			5/(N+1)	MSPS
	Input Swing	1.0		AVDD	V
VREFP	Positive Reference Voltage (Defined by AUX_REF pin)	1.0		AVDD	V
CIN	Input Capacitance Unselected Channel Selected Channel			50 1.2	fF pF
RIN	Input Resistance Unselected Channel Selected Channel	10 1.8			ΜΩ ΜΩ

RS	Resistor String Between AUX_REF pin & ground Power Up Power Down	35 10	50	65	ΚΩ ΜΩ
	Clock Latency		11		1/FC
DNL	Differential Nonlinearity		+0.5/-0.5		LSB
INL	Integral Nonlinearity		+1.0/-1.0		LSB
OE	Offset Error		+/- 10		mV
FSE	Full Swing Error		+/- 10		mV
SINAD	Signal to Noise and Distortion Ratio (10-KHz Full Swing Input & 13-MHz Clock Rate)		50		dB
DVDD	Digital Power Supply	1.6	1.8	2.0	V
AVDD	Analog Power Supply	2.5	2.8	3.1	V
T	Operating Temperature	-20		80	$^{\circ}\!\mathbb{C}$
	Current Consumption		300		μΑ
	Power-up		1		μΑ
	Power-Down				

Table 58 The Functional specification of Auxiliary ADC

12.1.6 Audio mixed-signal blocks

12.1.6.1 Block Descriptions

Audio mixed-signal blocks (AMB) integrate complete voice uplink/downlink and audio playback functions. As shown in the following figure, it includes mainly three parts. The first consists of stereo audio DACs and speaker amplifiers for audio playback. The second is the voice downlink path, including voice-band DACs and amplifiers, which produces voice signal to earphone or other auxiliary output device. Amplifiers in these two blocks are equipped with multiplexers to accept signals from internal audio/voice or external radio sources. The last is the voice uplink path, which is the interface between microphone (or other auxiliary input device) input and MT6225 DSP. A set of bias voltage is provided for external electret microphone.

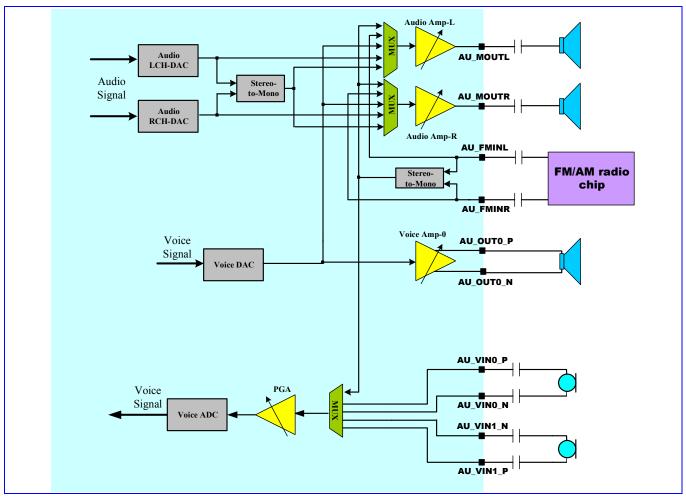


Figure 103 Block diagram of audio mixed-signal blocks.

12.1.6.2 Functional Specifications

The following table gives functional specifications of voice-band uplink/downlink blocks.

Symbol	Parameter	Min	Typical	Max	Unit
FS	Sampling Rate		4096		KHz
CREF	Decoupling Cap Between AU_VREF_P And AU_VREF_N		47		NF
DVDD	Digital Power Supply	1.6	1.8	2.0	V
AVDD	Analog Power Supply	2.5	2.8	3.1	V
T	Operating Temperature	-20		80	°C
IDC	Current Consumption		5		mA
VMIC	Microphone Biasing Voltage		1.9		V
IMIC	Current Draw From Microphone Bias			2	mA

	Pins				
Uplink Pa	th ⁴	•	•	1	,
SINAD	Signal to Noise and Distortion Ratio Input Level: -40 dbm0 Input Level: 0 dbm0	29	69		dB dB
RIN	Input Impedance (Differential)	13	20	27	ΚΩ
ICN	Idle Channel Noise			-67	dBm0
XT	Crosstalk Level			-66	dBm0
Downlink	Path ⁵	•	•		
SINAD	Signal to Noise and Distortion Ratio Input Level: -40 dBm0 Input Level: 0 dBm0	29	69		dB dB
RLOAD	Output Resistor Load (Differential)	28			Ω
CLOAD	Output Capacitor Load			200	pF
ICN	Idle Channel Noise of Transmit Path			-67	dBm0
XT	Crosstalk Level on Transmit Path			-66	dBm0

Table 59 Functional specifications of analog voice blocks

Functional specifications of the audio blocks are described in the following.

Symbol	Parameter	Min	Typical	Max	Unit
FCK	Clock Frequency		Fs*128		KHz
Fs	Sampling Rate	32	44.1	48	KHz
AVDD	Power Supply	2.6	2.8	3.1	V
Т	Operating Temperature	-20		80	$^{\circ}\!\mathbb{C}$
IDC	Current Consumption		5		mA
PSNR	Peak Signal to Noise Ratio		80		dB
DR	Dynamic Range		80		dB
VOUT	Output Swing for 0dBFS Input Level		0.85		Vrms
THD	Total Harmonic Distortion 45mW at 16 Ω Load			-40 -60	dB dB

⁴ For uplink-path, not all gain setting of VUPG meets the specification listed on table, especially for the several highest gains. The maximum gain that meets the specification is to be determined.

⁵ For downlink-path, not all gain setting of VDPG meets the specification listed on table, especially for the several lowest gains. The minimum gain that meets the specification is to be determined.

	22mW at 32 Ω Load			
RLOAD	Output Resistor Load (Single-Ended)	16		Ω
CLOAD	Output Capacitor Load		200	pF
XT	L-R Channel Cross Talk		TBD	dB

Table 60 Functional specifications of the analog audio blocks

12.1.7 Clock Squarer

12.1.7.1 Block Descriptions

For most VCXO, the output clock waveform is sinusoidal with too small amplitude (about several hundred mV) to make MT6228 digital circuits function well. Clock squarer is designed to convert such a small signal to a rail-to-rail clock signal with excellent duty-cycle. It provides also a pull-down function when the circuit is powered-down.

12.1.7.2 Function Specifications

The functional specification of clock squarer is shown in Table 61.

Symbol	Parameter	Min	Typical	Max	Unit
Fin	Input Clock Frequency		13		MHz
Fout	Output Clock Frequency		13		MHz
Vin	Input Signal Amplitude		500	AVDD	mVpp
DcycIN	Input Signal Duty Cycle		50		%
DeycOUT	Output Signal Duty Cycle	DeycIN-5		DcycIN+5	%
TR	Rise Time on Pin CLKSQOUT			5	ns/pF
TF	Fall Time on Pin CLKSQOUT			5	ns/pF
DVDD	Digital Power Supply	1.3	1.5	1.7	V
AVDD	Analog Power Supply	2.5	2.8	3.1	V
T	Operating Temperature	-20		80	$^{\circ}\!\mathbb{C}$
	Current Consumption		TBD		MA

Table 61 The Functional Specification of Clock Squarer

12.1.7.3 Application Notes

Here below in the figure is an equivalent circuit of the clock squarer. Please be noted that the clock squarer is designed to accept a sinusoidal input signal. If the input signal is not sinusoidal, its harmonic distortion should be low enough to not produce a wrong clock output. As an reference, for a 13MHz sinusoidal signal input with amplitude of 0.2V the harmonic distortion should be smaller than 0.02V.

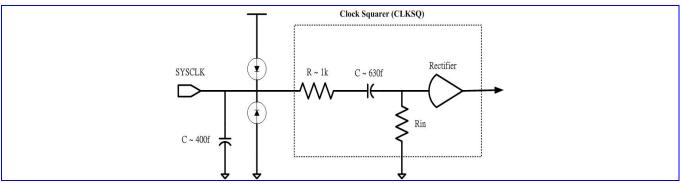


Figure 104 Equivalent circuit of Clock Squarer.

12.1.8 Phase Locked Loop

12.1.8.1 Block Descriptions

MT6228 includes three PLLs: DSP PLL, MCU PLL, and USB PLL. DSP PLL and MCU PLL are identical and programmable to provide either 52MHz or 78 MHz output clock while accepts 13MHz signal. USB PLL is designed to accept 4MHz input clock signal and provides 48MHz output clock.

12.1.8.2 Function Specifications

The functional specification of DSP/MCU PLL is shown in the following table.

Symbol	Parameter	Min	Typical	Max	Unit
Fin	Input Clock Frequency		13		MHz
Fout	Output Clock Frequency	52		78	MHz
	Lock-in Time		TBD		Ms
	Output Clock Duty Cycle	40	50	60	%
	Output Clock Jitter		650		ps
DVDD	Digital Power Supply	1.6	1.8	2.0	V
AVDD	Analog Power Supply	2.5	2.8	3.1	V
T	Operating Temperature	-20		80	$^{\circ}\!\mathbb{C}$
	Current Consumption		TBD		μΑ

Table 62 The Functional Specification of DSP/MCU PLL

The functional specification of USB PLL is shown below.

Symbol	Parameter	Min	Typical	Max	Unit
Fin	Input Clock Frequency		4		MHz
Fout	Output Clock Frequency		48		MHz
	Lock-in Time		TBD		μs
	Output Clock Duty Cycle	40	50	60	%
	Output Clock Jitter		650		ps

DVDD	Digital Power Supply	1.3	1.5	1.7	V
AVDD	Analog Power Supply	2.5	2.8	3.1	V
T	Operating Temperature	-20		80	$^{\circ}$ C
	Current Consumption		TBD		μΑ

Table 63 The Functional Specification of USB PLL

12.1.9 32-KHz Crystal Oscillator

12.1.9.1 Block Descriptions

The low-power 32-KHz crystal oscillator XOSC32 is designed to work with an external piezoelectric 32.768kHz crystal and a load composed of two functional capacitors, as shown in the following figure.

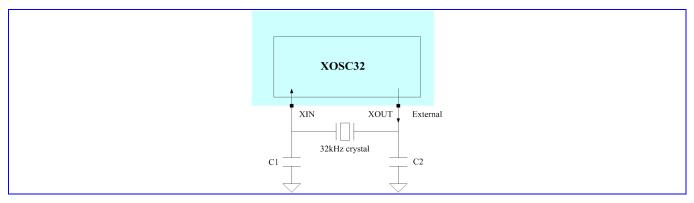


Figure 105 Block diagram of XOSC32

12.1.9.2 Functional specifications

The functional specification of XOSC32 is shown in the following table.

Symbol	Parameter	Min	Typical	Max	Unit
AVDDRTC	Analog power supply	1.2	1.5	2	V
Tosc	Start-up time			5	sec
Deyc	Duty cycle		50		%
TR	Rise time on XOSCOUT		TBD		ns/pF
TF	Fall time on XOSCOUT		TBD		ns/pF
	Current consumption			5	μΑ
	Leakage current		1		μΑ
T	Operating temperature	-20		80	$^{\circ}\!\mathbb{C}$

Table 64 Functional Specification of XOSC32

Here below are a few recommendations for the crystal parameters for use with XOSC32.

Symbol	Parameter	Min	Typical	Max	Unit
F	Frequency range		32768		Hz

GL	Drive level			5	uW
$\Delta f/f$	Frequency tolerance		+/- 20		Ppm
ESR	Series resistance			50	ΚΩ
C0	Static capacitance			1.6	pF
CL^6	Load capacitance	6		12.5	pF

Table 65 Recommended Parameters of the 32kHz crystal

12.2 MCU Register Definitions

12.2.1 BBRX

MCU APB bus registers for BBRX ADC are listed as followings.

MIXED+0300h BBRX ADC Analog-Circuit Control Register

BBRX AC CON

Bit	15	14	13	12	11 10	9 8	7	6 5	4	3	2	1	0
Name				DITHE N	QSEL	ISEL	RSV	GAIN		C	ALBIA	S	
Туре				R/W	R/W	R/W	R/W	R/W			R/W		
Reset				0	00	00	0	0			00000		

Set this register for analog circuit configuration controls.

CALBIAS The register field is for control of biasing current in BBRX mixed-signal module. It is coded in 2's complement. That is, its maximum is 15 and minimum is –16. Biasing current in BBRX mixed-signal module has impact on the performance of A/D conversion. The larger the value of the register field, the larger the biasing current in BBRX mixed-signal module, and the larger the SNR.

GAIN The register bit is for configuration of gain control of analog inputs in GSM RX mixed-signal module.

- **00** Input range is 0.8x AVDD for analog inputs in GSM RX mixed-signal module.
- **01** Input range is 0.4x AVDD for analog inputs in GSM RX mixed-signal module.
- 10 Input range is 0.57x AVDD for analog inputs in GSM RX mixed-signal module.
- 11 Input range is 0.33x AVDD for analog inputs in GSM RX mixed-signal module.

ISEL Loopback configuration selection for I-channel in BBRX mixed-signal module

- 00 Normal mode
- **01** Loopback TX analog I
- 10 Loopback TX analog Q
- 11 Select the grounded input

QSEL Loopback configuration selection for Q-channel in BBRX mixed-signal module

- 00 Normal mode
- **01** Loopback TX analog Q
- 10 Loopback TX analog I
- 11 Select the grounded input

347/377

⁶ CL is the parallel combination of C1 and C2 in the block diagram.

DITHDIS Dither feature Disable control register, which can effectively reduce the THD (total harmonic distortion) of the BBRX ADC.

- turn on the dither (default value)
- 1 Disable the dither

12.2.2 BBTX

MCU APB bus registers for BBTX DAC are listed as followings.

MIXED+0400h BBTX DAC Analog-Circuit Control Register 0

BBTX_AC_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	CALR CDON E			GAIN		CA	ALRCS	EL		TR	IMI			TRI	MQ	
Type	R	R/W		R/W			R/W			R/	W			R/	W	
Reset	0	0		000			000			00	00			00	00	

Set this register for analog circuit configuration controls. The procedure to perform calibration processing for smoothing filter in BBTX mixed-signal module is as follows:

- 1. Write 1 to the register bit CARLC in the register TX_CON of Baseband Front End in order to activate clock required for calibration process. Initiate calibration process.
- 2. Write 1 to the register bit STARTCALRC. Start calibration process.
- 3. Read the register bit CALRCDONE. If read as 1, then calibration process finished. Otherwise repeat the step.
- 4. Write 0 to the register bit STARTCALRC. Stop calibration process.
- 5. Write 0 to the register bit CARLC in the register TX_CON of Baseband Front End in order to deactivate clock required for calibration process. Terminate calibration process.
- 6. The result of calibration process can be read from the register field CALRCOUT of the register BBTX_AC_CON1. Software can set the value to the register field CALRCSEL for 3-dB cutoff frequency selection of smoothing filter in DAC of BBTX.

Remember to set the register field CALRCCONT of the register BBTX_AC_CON1 to 0xb before the calibration process. It only needs to be set once.

TRIMQ The register field is used to control gain trimming of Q-channel DAC in BBTX mixed-signal module. It is coded in 2's complement, that is, with maximum 15 and minimum –16.

TRIMI The register field is used to control gain trimming of I-channel DAC in BBTX mixed-signal module. It is coded in 2's complement, that is, with maximum 15 and minimum –16.

CALRCSEL The register field is for selection of cutoff frequency of smoothing filter in BBTX mixed-signal module. It is coded in 2's complement. That is, its maximum is 3 and minimum is -4.

GAIN The register field is used to control gain of DAC in BBTX mixed-signal module. It has impact on both of I- and Q-channel DAC in BBTX mixed-signal module. It is coded in 2's complement, that is, with maximum 3 and minimum –4.

STARTCALRC Whenever 1 is writing to the bit, calibration process for smoothing filter in BBTX mixed-signal module will be triggered. Once the calibration process is completed, the register bit CARLDONE will be read as 1.

CALRCDONE The register bit indicates if calibration process for smoothing filter in BBTX mixed-signal module has finished. When calibration processing finishes, the register bit will be 1. When the register bit STARTCALRC is set to 0, the register bit becomes 0 again.

MIXED+0404h BBTX DAC Analog-Circuit Control Register 1

BBTX_AC_CON

Bit	15 14	13 12	11 10 9 8 7	6 5 4 3	2 1 0
Name	CALRCOU	Γ FLOA Τ	CALRCCNT	CALBIAS	СМV
Type	R	R/W	R/W	R./W	R/W
Reset	-	0	00000	0000	000

Set this register for analog circuit configuration controls.

CMV The register field is used to control common voltage in BBTX mixed-signal module. It is coded in 2's complement, that is, with maximum 3 and minimum –4.

CALBIAS The register field is for control of biasing current in BBTX mixed-signal module. It is coded in 2's complement. That is, its maximum is 7 and minimum is –8. Biasing current in BBTX mixed-signal module has impact on performance of D/A conversion. Larger the value of the register field, the larger the biasing current in BBTX mixed-signal module.

CALRCCNT Parameter for calibration process of smoothing filter in BBTX mixed-signal module. Default value is '22'. Note that it is **NOT** coded in 2's complement. Therefore the range of its value is from 0 to 31. Remember to set it to 0x16 before BBTX calibration process if clock sent to BBTX is 26mhz. Otherwise set to 0xb if clock is 13mhz. It only needs to be set once.

FLOAT The register field is used to have the outputs of DAC in BBTX mixed-signal module float or not.

CALRCOUT After calibration processing for smoothing filter in BBTX mixed-signal module, a set of 3-bit value is obtained. It is coded in 2's complement.

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				DCCO	ARSE	DCCO	ARSEI	D	AC_PT	R	DWAE N		COA	RSE	CALR CAUT OL	
Type	R/W	R/W	R/W	R/	W	R/	W		R/W		R/W	R/W	R/	W	R/W	R/W
Reset	0	0	0	0	0	()		0000		0	0	()	0	0

Set this register for analog circuit configuration controls.

CALRCOPEN The register field is used to control normal Mode(close loop) or debug mode (open loop) for BBTX comparator in mixed signal

- onormal Mode (close loop)
- 1 debug Mode (open Loop)

CALRCAUTO The register field is used to control the result of calibration process of smoothing filter can automatically load to control the smoothing filter or not.

- O Not auto load, need manual load (default)
- 1 Auto load

COARSE The register field is used to control the central nominal value of BBTX DAC output

- 00 central nominal @ 1V
- 01 central nominal @ 1V -0.2V

DWAEN

- 10 reserved
- 11 central nominal @ 1V +0.2V

0 DWA scheme off (default)

1 DWA scheme on

DACPTR The register field is used to configured the staring pointer of 1 hot pulling of LSB[7:0] signal to BBTX DAC, range from 0~7. There is two different configuration. For DWAEN = 0, pointer always starts from the configuration value (e.g. if DACPTR = 3'b1, 1 hot will start pulling from LSB[1]). However, for DWAEN=1, the initial starting pointer will follow the configuration, while the pointer will move to most significant 1 hot pointer + 1 from the last LSB[7:0] input. (e.g. if DACPTR = 3'b1, and LSB[7:0] maybe 8'b00001110, then the next starting pointer will starts from LSB[4].). Defulat value is 0h.

DCCOARSEI The register field is used to control the central nominal value of BBTX DAC for I channel offset

The register field is used to turn on the DWA scheme of the BBTX DAC,

- 00 central nominal @ +0mV
- 01 central nominal @ +30mV
- 11 central nominal @ 30mV
- 10 reserved

DCCOARSEQ The register field is used to control the central nominal value of BBTX DAC for Q channel offset

- 00 central nominal @ +0mV
- 01 central nominal @ +30mV
- 11 central nominal @ 30mV
- 10 reserved

12.2.3 AFC DAC

MCU APB bus registers for AFC DAC are listed as follows.

MIXED+0500h AFC DAC Analog-Circuit Control Register

AFC_AC_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								GAIN SEL						CALI		
Type								R/W						R/W		
Reset								0		·				0		

Set this register for analog circuit configuration controls. Please refer to analog functional specification for more details.

GAINSEL gain selection of output swing

0 3/4VDD

1 Full VDD

CALI biasing current control

12.2.4 APC DAC

MCU APB bus registers for APC DAC are listed as followings.

MIXED+0600h APC DAC Analog-Circuit Control Register

APC_AC_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											BYP			CALI		
Type											R/W			R/W		
Reset											0			0		

Set this register for analog circuit configuration controls. Please refer to analog functional specification for more details.

BYP bypass output buffer **CALI** biasing current control

12.2.5 Auxiliary ADC

MCU APB bus registers for AUX ADC are listed as followings.

MIXED+0700h Auxiliary ADC Analog-Circuit Control Register

AUX_AC_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											GAIN EN			CALI		
Type											R/W			R/W		
Reset											0			0		

Set this register for analog circuit configuration controls. Please refer to analog functional specification for more details.

CALI Biasing current control

GAINEN Comparator switch enable signal.

12.2.6 Voice Front-end

MCU APB bus registers for speech are listed as followings.

MIXED+0100h AFE Voice Analog Gain Control Register

AFE_VAG_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						VUPG				VDI	PG0					
Type						R/W				R/	W					
Reset						0000				00	00					

Set this register for analog PGA gains. VUPG is set for microphone input volume control. And VDPG0 and VDPG1 are set for two output volume controls

VUPG voice-band up-link PGA gain control bits. For VCFG[3] = 1, it is only valid for INPUT 1.

VCFG [3] ='0'		VCFG [3] ='1'	
VUPG [4:0]	Gain	VUPG [4:0]	Gain
11111	42 dB	XX111	-21dB
11110	40 dB	XX110	-18dB
11101	38 dB	XX101	-15dB
11100	36 dB	XX100	-12dB
11011	34 dB	XX011	-9dB

11010	32 dB	XX010	-6dB
11001	30 dB	XX001	-3dB
11000	28 dB	XX000	0dB
10111	26 dB		
10110	24 dB		
10101	22 dB		
10100	20 dB		
10011	18 dB		
10010	16 dB		
10001	14 dB		
10000	12 dB		
01111	10 dB		
01110	8 dB		
01101	6 dB		
01100	4 dB		
01011	2 dB		
01010	0 dB		
01001	-2 dB		
01000	-4 dB		
00111	-6 dB		
00110	-8 dB		
00101	-10 dB		
00100	-12 dB		
00011	-14 dB		
00010	-16 dB		
00001	-18 dB		
00000	-20 dB		

VDPG0 voice-band down-link PGA0 gain control bits

VDPG0 [3:0]	Gain
1111	8dB
1110	6dB
1101	4dB
1100	2dB
1011	0dB
1010	-2dB
1001	-4dB
1000	-6dB
0111	-8dB

0110	-10dB
0101	-12dB
0100	-14dB
0011	-16dB
0010	-18dB
0001	-20dB
0000	-22dB

MIXED+0104h

AFE Voice Analog-Circuit Control Register 0 AFE_VAC_CON0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	VDC_COUPLE	VMIC_SHORT	VMIC_	VREF		\	/CFG	ì			VDSEND0			VCAI		
Type	R/W	R/W	R/	W			R/W				R/W			R/W	'	
Reset	0	0	0	0		C	0000)			00			0000	0	

Set this register for analog circuit configuration controls.

VDC_COUPLE Selectively choose DC couple microphone sense.

- O Disable DC couple sense of microphone
- 1 Enable DC couple sense of microphone

VMIC_SHORT Selectively short AU_MICBIASP / AU_MICBIASN.

- float MIC_BIASN and short it to MIC_BIASP when handsfree mode mic is plugged in
- 1 short MIC_BIASN to ground when handsfree mode mic is plugged in. In this mode, differential mic has current leakage and cause power loss.

VMIC_VREF Tuning MICBIASP DC voltage.

00 1.9V

01 2.0V

10 2.1V

11 2.2V

VCFG[4] microphone biasing control

0 differential biasing

1 single-ended biasing

VCFG[3] gain mode control. This control register is only valid to input 1. Others can be amplification mode only.

0 amplification

1 attenuation

VCFG[2] coupling control

0 AC

1 DC

VCFG[1:0] input select control

00 input 0

01 input 1

10 FM

11 reserved

VDSEND0 single-ended configuration control for out0

VCALI biasing current control, in 2's complement format

MIXED+0108h AFE Voice Analog-Circuit Control Register 1

AFE_VAC_CON1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	VUPO P_EN	VBIAS _EN	VOC_ EN	VE	BG_CTI	RL	VIBO OT	VFLO AT	VRSD ON						I .	VDAC INMO DE
Type	R/W	R/W	R/W		R/W		R/W	R/W	R/W						R/W	R/W
Reset	0	0	0		000		1	0	0						0	0

Set this register for analog circuit configuration controls. There are several loop back modes and test modes implemented for test purposes. Suggested value is 0280h.

VUPOP_EN de-pop noise enable

0: disable

1: enable

VBIAS_EN voice downlink buffer bias current control

0: normal bias current

1: increase bias current

VOC_EN voice downlink buffer over current protection

0: disable

1: enable

VBG_CTRL voice-band bandgap control

IBOOT voice downlink DAC bias current control

0: increase bias current

1: normal bias current

VFLOAT voice-band output driver float

0: normal operating mode

1: float mode

VRSDON voice-band redundant signed digit function on

0: 1-bit 2-level mode

1: 2-bit 3-level mode

VADCINMODE Voice-band ADC output mode.

0: normal operating mode

1: the ADC input from the DAC output

VDACINMODE Voice-band DAC input mode.

0: normal operating mode

1: the DAC input from the ADC output

MIXED+010Ch AFE Voice Analog Power Down Control Register

AFE_VAPDN_C ON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											VPDN _BIAS			VPDN _DAC		VPDN _OUT 0
Type											R/W	R/W	R/W	R/W		R/W

Reset 0 0 0 0 0

Set this register to power up analog blocks. 0: power down, 1: power up.

VPDN_BIAS bias block

VPDN_LNAlow noise amplifier block

VPDN_ADC ADC block
VPDN_DAC DAC block

VPDN OUT0 OUT0 buffer block

MIXED+0110h AFE Voice AGC Control Register

AFE_VAGC_CO

N

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		AAGC EN	AGCT EST	RELNO		RELN	OILEV L	FRELO	CKSEL	SRELO	CKSEL	ATTTH	IDCAL	ATTC KSEL	HYST EREN	DAGC EN
Type		R/W	R/W	R/	W	R/	W	R/	W	R/	W	R/	W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Set this register for analog circuit configuration controls. There are several loop back modes and test modes implemented for test purposes. Suggested value is 4dcfh.

DAGCEN Digital AGC function enable. The loop-back path of AGC comprises analog comparators and digital gain control circuitry. This control register is used to enable the digital gain control circuitry. For normal function, DAGCEN and AAGCEN shall be set to "1" to enable voice AGC function.

HYSTEREN AGC hysteresis function enable

ATTCKSEL attack clock selection

0: 16 KHz **1**: 32 KHz

ATTTHDCAL attack threshold calibration

SRELCKSEL release slow clock selection

: 1000/512 Hz : 1000/256 Hz : 1000/128 Hz : 1000/64 Hz

FRELCKSEL release fast clock selection

00: 1000/64 Hz01: 1000/32 Hz10: 1000/16 Hz11: 1000/8 Hz

RELNOILEVSEL release noise level selection

00: -8 dB **01**: -14 dB **10**: -20 dB **11**: -26 dB

RELNOIDURSEL release noise duration selection

00: 64 ms

01: 32 ms **10**: 16 ms

11: 8 ms, 32768/4096

AAGCEN Analog AGC function enable. This control bit is used to enable the comparators of AGC loop-back path.

12.2.7 Audio Front-end

MCU APB bus registers for audio are listed as followings.

MIXED+0200h AFE Audio Analog Gain Control Register

AFE_AAG_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							AMUT ER	AMUT EL		AP	GR			AP	GL	
Type							R/W	R/W	RW					R/	W	
Reset							0	0		00	00			00	00	

Set this register for analog PGA gains.

AMUTEL audio PGA L-channel mute control
audio PGA R-channel mute control
audio PGA R-channel gain control
audio PGA L-channel gain control

APGR [3:0] / APGL [3:0]	Gain
1111	23dB
1110	20dB
1101	17dB
1100	14dB
1011	13dB
1010	8dB
1001	5dB
1000	2dB
0111	-1dB
0110	-4dB
0101	-7dB
0100	-10dB
0011	-13dB
0010	-16dB
0001	-19dB
0000	-22dB

MIXED+0204h AFE Audio Analog-Circuit Control Register

AFE_AAC_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			APRO_SC	ADEPOP		AB	UFSE	LR	AB	UFSE	LL			ACALI		
Type			R/W	R/W		ABUFSELR R/W				R/W				R/W		
Reset			0	0			000			000				00000		

Set this register for analog circuit configuration controls.

APRO_SC Short circuit protection.

0 disable

1 enable

ADEPOP De-POP noise.

0 disable

1 enable

ABUFSELR audio buffer R-channel input selection

000: audio DAC R/L-channel output; stereo to mono

001: audio DAC R-channel output

010: voice DAC output

100: external FM R/L-channel radio output, stereo to mono

101: external FM R-channel radio output

OTHERS: reserved.

ABUFSELL audio buffer L-channel input selection

000: audio DAC R/L-channel output; stereo to mono

001: audio DAC L-channel output

010: voice DAC output

100: external FM R/L-channel radio output, stereo to mono

101: external FM L-channel radio output

OTHERS: reserved.

ACALI audio bias current control, in 2's complement format

MIXED+0208h AFE Audio Analog Power Down Control Register

AFE_AAPDN_C ON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												APDN _BIAS	DAC			APDN _OUT _L
Type												R/W	R/W	R/W	R/W	R/W
Reset												0	0	0	0	0

Set this register to power up analog blocks. 0: power down, 1: power up. Suggested value is 00ffh.

APDN_BIAS BIAS block

APDN_DACR R-channel DAC block
APDN_DACL L-channel DAC block
APDN_OUTR R-channel OUT buffer block
APDN_OUTL L-channel OUT buffer block

MIXED+020Ch Enhanced Audio Analog Front End Control & Parameters

AFE AAC NEW

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								MIC_S HORT	BUF_	BIAS	DAC_ MODE	M	JX	VCMB UF_E N	VCM_ MODE	DC_C OUPL E

Type				R/W						
Reset				0	0	0		0	0	0

MT6225 ehnahced audio DAC application circuitry selection and control parameters.

MIC_SHORT Selectively short AU_MICBIASP and AU_MICBIASN. Useless.

BUF_BIAS Select buffer quasi-current.

00 Nominal bias current

01 Larger bias current

10 Smallest bias current

11 Smaller bias current

DAC_MODE Select two different DAC circuitry.

• New DAC

1 Old DAC

Mux audio DAC output to DM R/L pins.

00 FM input

01 FM input

10 Left channel DAC

11 Right channel O/P

VCMBUF_EN Enable DC couple VCM buffer.

O Disable VCM buffer

1 Enable VCM buffer

VCM_MODE Change common mode generation circuitry.

New VCM circuitry

1 Old VCM circuitry

DC_COUPLE Enable DC couple microphone sense. Useless.

0 Disable

1 Enable

12.2.8 Reserved

Some registers are reserved for further extensions.

MIXED+0800h Reserved 0 Analog Circuit Control Register 0

RESO_AC_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
Type	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MIXED+0804h Reserved 0 Analog Circuit Control Register 1

RESO_AC_CON

1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
Type	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MIXED+0900h Reserved 1 Analog Circuit Control Register 0

RES1_AC_CON

n

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
Type	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MIXED+0904h Reserved 1 Analog Circuit Control Register 1

RES1_AC_CON

1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
Type	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MIXED+0A00h Reserved 2 Analog Circuit Control Register 0

RES2_AC_CON

Λ

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
Type	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MIXED+0A04h Reserved 2 Analog Circuit Control Register 1

RES2_AC_CON

4

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
Type	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MIXED+0B00h Reserved 3 Analog Circuit Control Register 0

RES3_AC_CON

0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
Type	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MIXED+0B04h Reserved 3 Analog Circuit Control Register 1

RES3_AC_CON

1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Name																
Туре	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MIXED+0C00h Reserved 4 Analog Circuit Control Register 0

RES4_AC_CON

^

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
Type	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MIXED+0C04h Reserved 4 Analog Circuit Control Register 1

RES4_AC_CON

4

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
Type	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MIXED+0D00h Reserved 5 Analog Circuit Control Register 0

RES5_AC_CON

^

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
Type	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MIXED+0D04h Reserved 5 Analog Circuit Control Register 1

RES5_AC_CON1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
Type	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MIXED+0E00h Reserved 6 Analog Circuit Control Register 0

RES6_AC_CON0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
Type	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MIXED+0E04h Reserved 6 Analog Circuit Control Register 1

RES6_AC_CON1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
Type	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MIXED+0F00h Reserved 7 Analog Circuit Control Register 0

RES7_AC_CON0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
Type	R/W															

Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MIXED+0F04h Reserved 7 Analog Circuit Control Register 1

DEST	7 AC	CON1
		CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
Type	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

12.3 Programming Guide

12.3.1 BBRX Register Setup

The register used to control analog base-band receiver is **BBRX AC CON**.

12.3.1.1 Programmable Biasing Current

To maximize the yield in modern digital process, the receiver features providing 5-bit 32-level programmable current to bias internal analog blocks. The 5-bits registers CALBIAS [4:0] is coded with 2's complement format.

12.3.1.2 Offset / Gain Calibration

The base-band downlink receiver (RX), together with the base-band uplink transmitter (TX) introduced in the next section, provides necessary analog hardware for DSP algorithm to correct the mismatch and offset error. The connection for measurement of both RX/TX mismatch and gain error is shown in **Figure** 106, and the corresponding calibration procedure is described below.

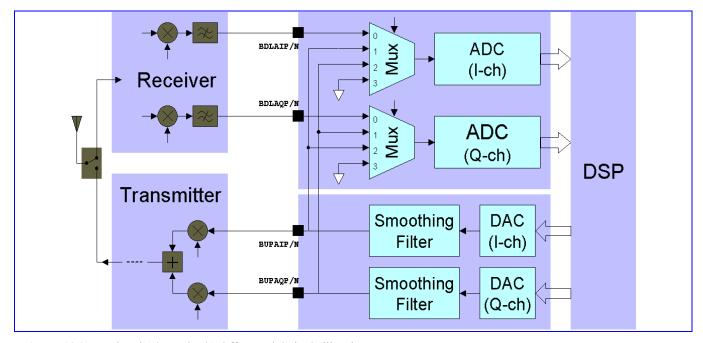
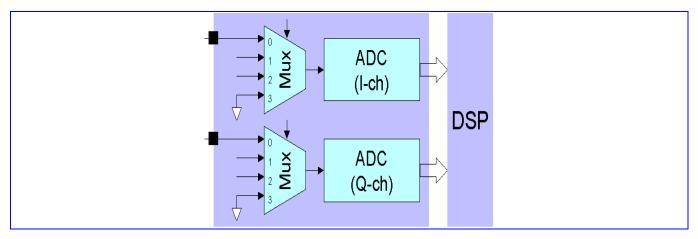
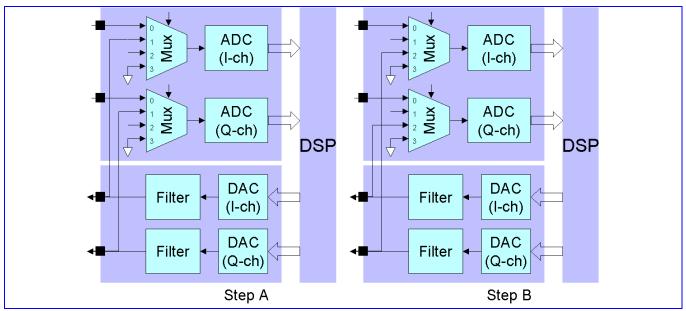


Figure 106 Base-band A/D and D/A Offset and Gain Calibration

12.3.1.3 Downlink RX Offset Error Calibration

The RX offset measurement is achieved by selecting grounded input to A/D converter (set ISEL [1:0] = '11' and QSEL [1:0] = '11' to select channel 3 of the analog input multiplexer, as shown in **Figure** 107. The output of the ADC is sent to DSP for further offset cancellation. The offset cancellation accuracy depends on the number of samples being converted. That is, more accurate measurement can be obtained by collecting more samples followed by averaging algorithm.




Figure 107 Downlink ADC Offset Error Measurement

12.3.1.4 Downlink RX and Uplink TX Gain Error Calibration

To measure the gain mismatch error, both I/Q uplink TXs should be programmed to produce full-scale pure sinusoidal waves output. Such signals are then fed to downlink RX for A/D conversion, in the following two steps.

- A. The uplink I-channel output are connected to the downlink I-channel input, and the uplink Q-channel output are connected to the downlink Q-channel input. This can be achieved by setting ISEL [1:0] ='01' and QSEL [1:0] ='01' (shown in **Figure** 108 (A))..
- B. The uplink I-channel output are then connected to the downlink Q-channel input, and the uplink Q-channel output are connected to the downlink I-channel input. This can be achieved by setting ISEL [1:0] ='10' and QSEL [1:0] ='10' (shown in **Figure** 108 (B)).

Figure 108 Downlink RX and Up-link TX Gain Mismatch Measurement (A) I/Q TX connect to I/Q RX (B) I/Q TX connect to Q/I RX

Once above successive procedures are completed, RX/TX gain mismatch could be easily obtained because the amplitude mismatch on RX digitized result in step A and B is the sum and difference of RX and TX gain mismatch, respectively.

The gain error of the downlink RX can be corrected in the DSP section and the uplink TX gain error can be corrected by the gain trimming facility that TX block provide.

12.3.1.5 Uplink TX Offset Error Calibration

Once the offset of the downlink RX is known and corrected, the offset of the uplink TX alone could be easily estimated. The offset error of TX should be corrected in the digital domain by means of the programmable feature of the digital GMSK modulator.

Finally, it is important that above three calibration procedures should be exercised in order, that is, correct the RX offset first, then RX/TX gain mismatch, and finally TX offset. This is owing to that analog gain calibration in TX will affect its offset, while the digital offset correction has no effect on gain.

12.3.2 BBTX Register Setup

The register used to control analog base-band transmitter is BBTX_AC_CON0 and BBTX_AC_CON1.

12.3.2.1 Output Gain Control

The output swing of the uplink transmitter is controlled by register GAIN [2:0] coded in 2's complement with about 2dB step. When TRIMI [3:0] / TRIMQ [3:0] = 0 the swing is listed in **Table** 66, defined to be the difference between positive and negative output signal.

GAIN [2:0]	Output Swing	For AVDD=2.8 (V)
+3 (011)	AVDD*0.900 (+6.02 dB)	2.52
+2 (010)	AVDD*0.720 (+4.08 dB)	2.02

+1 (001)	AVDD*0.576 (+2.14 dB)	1.61
+0 (000)	AVDD*0.450 (+0.00 dB)	1.26
-1 (111)	AVDD*0.360 (-1.94 dB)	1
-2 (110)	AVDD*0.288 (-3.88 dB)	0.81
-3 (101)	AVDD*0.225 (-6.02 dB)	0.63
-4 (100)	AVDD*0.180 (-7.95 dB)	0.5

Table 66 Output Swing Control Table

12.3.2.2 Output Gain Trimming

I/Q channels can also be trimmed separately to compensate gain mismatch in the base-band transmitter or the whole transmission path including RF module. The gain trimming is adjusted in 16 steps spread from –1.18dB to +1.18dB (**Table** 67), compared to the full-scale range set by GAIN [2:0].

TRIMI [3:0] / TRIMQ [3:0]	Gain Step (dB)
+7 (0111)	1.18
+6 (0110)	1.00
+5 (0101)	0.83
+4 (0100)	0.66
+3 (0011)	0.49
+2 (0010)	0.32
+1 (0001)	0.16
+0 (0000)	0.00
-1 (1111)	-0.16
-2 (1110)	-0.31
-3 (1101)	-0.46
-4 (1100)	-0.61
-5 (1011)	-0.75
-6 (1010)	-0.90
-7 (1001)	-1.04
-8 (1000)	-1.18

Table 67 Gain Trimming Control Table

12.3.2.3 Output Common-Mode Voltage

The output common-mode voltage is controlled by CMV [2:0] with about 0.08*AVDD step, as listed in the following table.

CMV [2:0]	Common-Mode Voltage
+3 (011)	AVDD*0.62

+2 (010)	AVDD*0.58
+1 (001)	AVDD*0.54
+0 (000)	AVDD*0.50
-1 (111)	AVDD*0.46
-2 (110)	AVDD*0.42
-3 (101)	AVDD*0.38
-4 (100)	AVDD*0.34

Table 68 Output Common-Mode Voltage Control Table

12.3.2.4 Programmable Biasing Current

The transmitter features providing 5-bit 32-level programmable current to bias internal analog blocks. The 5-bits registers CALBIAS [4:0] is coded with 2's complement format.

12.3.2.5 Smoothing Filter Characteristic

The 2nd –order Butterworth smoothing filter is used to suppress the image at DAC output: it provides more than 40dB attenuation at the 4.44MHz sampling frequency. To tackle with the digital process component variation, programmable cutoff frequency control bits CALRCSEL [2:0] are included. User can directly change the filter cut-off frequency by different CALRCSEL value (coded with 2's complement format and with a default value 0). In addition, an internal calibration process is provided, by setting START CALRC to high and CALRCCNT to an appropriate value (default is 11). After the calibration process, the filter cut-off frequency is calibrated to 350kHz +/- 50 kHz and a new CALRCOUT value is stored in the register. During the calibration process, the output of the cell is high-impedance.

12.3.3 AFC-DAC Register Setup

The register used to control the APC DAC is AFC_AC_CON, which providing 5-bit 32-level programmable current to bias internal analog blocks. The 5-bits registers CALI [4:0] is coded with 2's complement format.

12.3.4 APC-DAC Register Setup

The register used to control the APC DAC is AFC_AC_CON, which providing 5-bit 32-level programmable current to bias internal analog blocks. The 5-bits registers CALI [4:0] is coded with 2's complement format.

12.3.5 Auxiliary A/D Conversion Register Setup

The register used to control the Aux-ADC is AUX_AC_CON. For this register, which providing 5-bit 32-level programmable current to bias internal analog blocks. The 5-bits registers CALI [4:0] is coded with 2's complement format.

12.3.6 Voice-band Blocks Register Setup

The registers used to control AMB are AFE_VAG_CON, AFE_VAC_CON0, AFE_VAC_CON1, and AFE_VAPDN_CON. For these registers, please refer to chapter "Analog Chip Interface"

12.3.6.1 Reference Circuit

The voice-band blocks include internal bias circuits, a differential bandgap voltage reference circuit and a differential microphone bias circuit. Internal bias current could be calibrated by varying VCALI[4:0] (coded with 2's complement format).

The differential bandgap circuit generates a low temperature dependent voltage for internal use. For proper operation, there should be an external 47nF capacitor connected between differential output pins AU_VREFP and AU_VREFN. The bandgap voltage (~1.24V⁷, typical) also defines the dBm0 reference level through out the audio mixed-signal blocks. The following table illustrates typical 0dBm0 voltage when uplink/downlink programmable gains are unity. For other gain setting, 0dBm0 reference level should be scaled accordingly.

Symbol	Parameter	Min	Typical	Max	Unit
V _{0dBm0} , _{UP}	0dBm0 Voltage for Uplink Path, Applied Differentially Between Positive and Negative Microphone Input Pins		0.2V		V-rms
$V_{0dBm0,Dn}$	0dBm0 voltage for Downlink Path, Appeared Differentially Between Positive and Negative Power Amplifier Output Pins		0.6V		V-rms

Table 69 0dBm0 reference level for unity uplink/downlink gain

The microphone bias circuit generates a differential output voltage between AU_MICBIAS_P and AU_MICBIAS_N for external electret type microphone. Typical output voltage is 1.9 V. In singled-ended mode, by set VCFG[3] =1, AU_MICBIAS_N is pull down while output voltage is present on AU_MICBIAS_P, respect to ground. The max current supplied by microphone bias circuit is 2mA.

12.3.6.2 Uplink Path

Uplink path of voice-band blocks includes an uplink programmable gain amplifier and a sigma-delta modulator.

12.3.6.2.1 Uplink Programmable Gain Amplifier

Input to the PGA is a multiplexer controlled by VCFG [3:0], as described in the following table. In normal operation, both input AC and DC coupling are feasible for attenuation the input signal (gain <= 0dB). However, only AC coupling is suggested if amplification of input signal is desired (gain>=0dB).

Control Signal	Function	Descriptions
VCFG [0]	Input Selector	0: Input 0 (From AU_VIN0_P / AU_VIN0_N) Is Selected 1: Input 1 (From AU_VIN1_P / AU_VIN1_N) Is Selected
VCFG [1]	Coupling Mode	0: AC Coupling 1: DC Coupling
VCFG [2]	Gain Mode	0: Amplification Mode (gain >= 0 dB)

⁷ The bandgap voltage could be calibrated by adjusting control signal VBG_CTRL[1:0]. Its default value is [00]. VBG_CTRL not only adjust the bandgap voltage but also vary its temperature dependence. Optimal value of VBG_CTRL is to be determined.

MediaTek Inc. Confidential

		1: Attenuation Mode (gain <= 0dB)
VCFG [3]	Microphone Biasing	0: Differential Biasing (Take Bias Voltage Between AU_MICBIAS_P and AU_MICBIAS_N)
		1: Signal-Ended Biasing (Take Bias Voltage From AU_MICBIAS_P Respected to Ground. AU_MICBIAS_N Is Connected to Ground)

Table 70 Uplink PGA input configuration setting

The PGA itself provides programmable gain (through VUPG [3:0]) with step of 3dB, as listed in the following table.

VCFG [2] ='0'		VCFG [2] ='1'			
VUPG [3:0]	Gain	VUPG [3:0]	Gain		
1111	NA	X111	-21dB		
1110	42dB	X110	-18dB		
1101	39dB	X101	-15dB		
1100	36dB	X100	-12dB		
1011	33dB	X011	-9dB		
1010	30dB	X010	-6dB		
1001	27dB	X001	-3dB		
1000	24dB	X000	0dB		
0111	21dB				
0110	18dB				
0101	15dB				
0100	12dB				
0011	9dB				
0010	6dB				
0001	3dB				
0000	0dB				

Table 71 Uplink PGA gain setting (VUPG [3:0])

The following table illustrates typically the 0dBm0 voltage applied at the microphone inputs, differentially, for several gain settings.

VCFG [2] ='0'		VCFG [2] ='1'				
VUPG [3:0]	0dBm0 (V-rms)	VUPG [3:0]	0dBm0 (V-rms)			
1100	3.17mV	X110	1.59V			
1000	12.6mV	X100	0.8V			
0100	50.2mV	X010	0.4V			
0000	0.2V	X000	0.2V			

Table 72 0dBm0 voltage at microphone input pins

12.3.6.2.2 Sigma-Delta Modulator

Analog-to-digital conversion in uplink path is made with a second-order sigma-delta modulator (SDM) whose sampling rate is 4096kHz. Output signals are coded in either one-bit or RSD format, optionally controlled by VRSDON register.

For test purpose, one can set VADCINMODE to HI to form a look-back path from downlink DAC output to SDM input. The default value of VADCINMODE is zero.

12.3.6.3 Downlink Path

Downlink path of voice-band blocks includes a digital to analog converter (DAC) and two programmable output power amplifiers.

12.3.6.3.1 Digital to Analog Converter

The DAC converts input bit-stream to analog signal by sampling rate of 4096kHz. Besides, it performs a 2^{nd} -order 40kHz butterworth filtering. The DAC receives input signals from MT6228 DSP by set VDACINMODE = 0. It can also take inputs from SDM output by setting VDACINMODE = 1.

12.3.6.3.2 Downlink Programmable Power Amplifier

Voice-band analog blocks include two identical output power amplifiers with programmable gain. Amplifier 0 and amplifier 1 can be configured to either differential or single-ended mode by adjusting VDSEND [0] and VDSEND [1], respectively. In single-ended mode, when VDSEND[0] =1, output signal is present at AU_VOUT0_P pin respect to ground. Same as VDSEND[1] for AU_VOUT1_P pin.

For the amplifier itself, programmable gain setting is described in the following table.

VDPG0 [3:0] / VDPG1 [3:0]	Gain
1111	8dB
1110	6dB
1101	4dB
1100	2dB
1011	0dB
1010	-2dB
1001	-4dB
1000	-6dB
0111	-8dB
0110	-10dB
0101	-12dB
0100	-14dB
0011	-16dB
0010	-18dB
0001	-20dB
0000	-22dB

Table 73 Downlink power amplifier gain setting

Control signal VFLOAT, when set to 'HI', is used to make output nodes totally floating in power down mode. If VFLOAT is set to 'LOW" in power down mode, there will be a resistor of 50k ohm (typical) between AU_VOUT0_P and AU_VOUT0_N, as well as between AU_VOUT0_P and AU_VOUT0_N.

The amplifiers deliver signal power to drive external earphone. The minimum resistive load is 28 ohm and the upper limit of the output current is 50mA. On the basis that 3.14dBm0 digital input signal into downlink path produces DAC output differential voltage of 0.87V-rms (typical), the following table illustrates the power amplifier output signal level (in V-rms) and signal power for an external 32 ohm resistive load.

VDPG	Output Signal Level (V-rms)	Output Signal Power (mW / dBm)
0010	0.11	0.37/-4.3
0110	0.27	2.28/3.6
1010	0.69	14.8/11.7
1110	1.74	94.6/19.8

Table 74 Output signal level/power for 3.14dBm0 input. External resistive load = 32 ohm

The following table illustrates the output signal level and power for different resistive load when VDPG =1110.

RLOAD	Output Signal Level (V-rms)	Output Signal Power (mW / dBm)
30	1.74	101/20
100	1.74	30.3/14.8
600	1.74	5/7

Table 75 Output signal level/power for 3.14dBm0 input, VDPG =1110

12.3.6.4 Power Down Control

Each block inside audio mixed-signal blocks features dedicated power-down control, as illustrated in the following table.

Control Signal	Descriptions
VPDN_BIAS	Power Down Reference Circuits (Active Low)
VPDN_LNA	Power Down Uplink PGA (Active Low)
VPDN_ADC	Power Down Uplink SDM (Active Low)
VPDN_DAC	Power Down DAC (Active Low)
VPDN_OUT0	Power Down Downlink Power Amp 0 (Active Low)
VPDN_OUT1	Power Down Downlink Power Amp 1 (Active Low)

Table 76 Voice-band blocks power down control

12.3.7 Audio-band Blocks Register Setup

The registers used to control audio blocks are AFE_AAG_CON, AFE_AAC_CON, and AFE_AAPDN_CON. For these registers, please refer to chapter "Analog Chip Interface"

12.3.7.1 Output Gain Control

Audio blocks include stereo audio DACs and programmable output power amplifiers. The DACs convert input bit-stream to analog signal by sampling rate of Fs*128 where Fs could be 32kHz, 44.1kHz, or 48kHz. Besides, it performs a 2nd-order butterworth filtering. The two identical output power amplifiers with programmable gain are designed to driving external AC-coupled single-end speaker. The minimum resistor load is 16 ohm and the maximum driving current is 50mA. The programmable gain setting, controlled by APGR[] and APGL[], is the same as that of the voice-band amplifiers.

Unlike voice signals, 0dBFS defines the full-scale audio signals amplitude. Based on bandgap reference voltage again, the following table illustrates the power amplifier output signal level (in V-rms) and signal power for an external 16 ohm resistive load.

APGR[]/ APGL[]	Output Signal Level (V-rms)	Output Signal Power (mW / dBm)
0010	0.055	0.19/-7.2
0110	0.135	1.14/0.6
1010	0.345	7.44/8.7
1110	0.87	47.3/16.7

Table 77 Output signal level/power for 0dBFS input. External resistive load = 16 ohm

12.3.7.2 Mute Function and Power Down Control

By setting AMUTER (AMUTEL) to high, right (Left) channel output will be muted.

Each block inside audio mixed-signal blocks features dedicated power-down control, as illustrated in the following table.

Control Signal	Descriptions
APDN_BIAS	Power Down Reference Circuits (Active Low)
APDN_DACL	Power Down L-Channel DAC (Active Low)
APDN_DACR	Power Down R-Channel DAC (Active Low)
APDN_OUTL	Power Down L-Channel Audio Amplifier (Active Low)
APDN_OUTR	Power Down R-Channel Audio Amplifier (Active Low)

Table 78 Audio-band blocks power down control

12.3.8 Multiplexers for Audio and Voice Amplifiers

The audio/voice amplifiers feature accepting signals from various signal sources including AU_FMINR/AU_FMINL pins, that aimed to receive stereo AM/FM signal from external radio chip:

- 1) Voice-band amplifier 0 accepts signals from voice DAC output only.
- 2) Voice-band amplifier 1 accepts signal from either voice DAC, audio DAC, or AM/FM radio input pins (controlled by register VBUF1SEL[]). For the last two cases, left and right channel signals will be summed together to form a mono signal first.

3) Audio left/right channel amplifiers receive signals from either voice DAC, audio DAC, or AM/FM radio input pins (controlled by registers ABUFSELL[] and ABUFSELR[]), too. Left and right channel amplifiers will produce identical output waveforms when receiving mono signals from voice DAC.

12.3.9 Preferred Microphone and Earphone Connections

In this section, preferred microphone and earphone connections are discussed.

Differential connection of microphone is shown below. This is the preferred method to obtain the possible best performance. C1 and Rin form an AC coupling and high-pass network. C1*Rin should be chosen such that the in-band signal will not be attenuated too much. For differential minimum resistance of 13k ohm, minimum value of C1 is 170nF for less than 1dB attenuation at 300Hz. R2 is determined by microphone sensitivity. C2 and R2 form another low-pass filter to filtering noise coming from microphone bias pins. Pole frequency less than 50Hz is recommended.

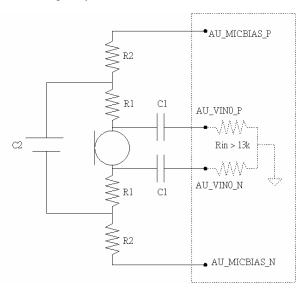


Figure 6 Differential Microphone Connection

For reference, single-ended connection method of microphone is shown below. R1 and R3 are chosen based on microphone sensitivity requirement. C1 and Rin form an AC coupling and high-pass network. R2 and C2 constitute a low-pass network for filtering out noise from microphone bias pins.

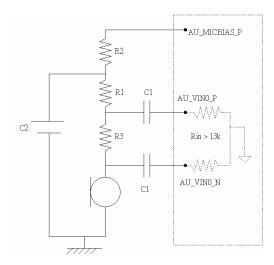


Figure 7 Single-ended Microphone Connection

For earphone, both differential and single-ended connections can be used. Advantage of differential connection includes lower cost and better click-noise immunity. For single-ended connection, an additional AC-coupling capacitor is necessary to not provide DC voltage to earphone. The high-pass cut-off frequency formed by AC-coupling capacitor and earphone equivalent load should be low enough (e.g. < 300 Hz).

12.3.10 Clock Squarer Register Setup

The register used to control clock squarer is CLK_CON. For this register, please refer to chapter "Clocks"

CLKSQ_PLD is used to bypass the clock squarer.

12.3.11 Phase-Locked Loop Register Setup

For registers control the PLL, please refer to chapter "Clocks" and "Software Power Down Control"

12.3.11.1 Frequency Setup

The DSP/MCU PLL itself could be programmable to output either 52MHz or 78MHz clocks. Accompanied with additional digital dividers, 13/26/39/52/65/78 MHz clock outputs are supported.

12.3.11.2 Programmable Biasing Current

The PLLs feature providing 5-bit 32-level programmable current to bias internal analog blocks. The 5-bits registers CALI [4:0] is coded with 2's complement format.

12.3.12 32-khz Crystal Oscillator Register Setup

For registers that control the oscillator, please refer to chapter "Real Time Clock" and "Software Power Down Control".

XOSCCALI[4:0] is the calibration control registers of the bias current, and is coded with 2's complement format.

¹ CL is the parallel combination of C1 and C2 in the block diagram.

13 Digital Pin Electrical Characteristics

- Based on I/O power supply (VDD33) = 3.3 V
- Vil (max) = 0.8 V
- Vih (min) = 2.0 V

Ball	Name	Dir	Driving Iol &	Vol at Iol Max	Voh at Ioh Min	PU/PD F	Resistor		Pull	Cin
12x12			Ioh Typ (mA)	(V)	(V)	Min	Тур	Max		(pF)
		•	JTAG Port				•			
C2	JTRST#	I				40K	75K	190K	PD	5.2
D2	JTCK	I				40K	75K	190K	PU	5.2
D3	JTDI	I				40K	75K	190K	PU	5.2
E1	JTMS	I				40K	75K	190K	PU	5.2
E2	JTDO	О	4	0.4	2.4					
F1	JRTCK	О	4	0.4	2.4					
			RF Parallel Co	ntrol Unit				•		
E3	BPI_BUS0	О	2/8	0.4	2.4					
E4	BPI_BUS1	О	2/8	0.4	2.4					
F2	BPI_BUS2	О	2/8	0.4	2.4					
F3	BPI_BUS3	О	2/8	0.4	2.4					
F4	BPI_BUS4	О	2	0.4	2.4					
F5	BPI_BUS5	О	2	0.4	2.4					
F6	BPI_BUS6	IO	2	0.4	2.4	40K	75K	190K	PD	5.2
G5	BPI_BUS7	IO	2	0.4	2.4	40K	75K	190K	PD	5.2
G4	BPI_BUS8	IO	2	0.4	2.4	40K	75K	190K	PD	5.2
G3	BPI_BUS9	IO	2	0.4	2.4	40K	75K	190K	PD	5.2
	-	_	RF Serial Cont	rol Unit			_			
G2	BSI_CS0	О	2	0.4	2.4					
G1	BSI_DATA	О	2	0.4	2.4					
H1	BSI_CLK	О	2	0.4	2.4					
			Serial LCD/PM	I IC Interface						
H2	LSCK	IO	2/4/6/8	0.4	2.4	40K	75K	190K	PU	5.2
Н3	LSA0	IO	2/4/6/8	0.4	2.4	40K	75K	190K	PU	5.2
H4	LSDA	IO	2/4/6/8	0.4	2.4	40K	75K	190K	PU	5.2
J1	LSCE0#	IO	2/4/6/8	0.4	2.4	40K	75K	190K	PU	5.2
J2	LSCE1#	IO	2/4/6/8	0.4	2.4	40K	75K	190K	PU	5.2
			Parallel LCD/N	NAND-Flash Inte	rface					
J3	LPCE1#	IO	2/4/6/8	0.4	2.4	40K	75K	190K	PU	5.2
J4	LPCE0#	О	2/4/6/8	0.4	2.4					
K1	LRST#	О	2/4/6/8	0.4	2.4					
K2	LRD#	О	2/4/6/8	0.4	2.4					
K3	LPA0	О	2/4/6/8	0.4	2.4					
K4	LWR#	О	2/4/6/8	0.4	2.4					
K5	NLD17	IO	2/4/6/8	0.4	2.4	40K	75K	190K	PD	5.2
L5	NLD16	IO	2/4/6/8	0.4	2.4	40K	75K	190K	PD	5.2
L4	NLD15	IO	2/4/6/8	0.4	2.4	40K	75K	190K	PD	5.2
L3	NLD14	IO	2/4/6/8	0.4	2.4	40K	75K	190K	PD	5.2

MEDIATE	· ·	_								
L2	NDL13	IO	2/4/6/8	0.4	2.4	40K	75K	190K	PD	5.2
L1	NLD12	IO	2/4/6/8	0.4	2.4	40K	75K	190K	PD	5.2
M5	NLD11	IO	2/4/6/8	0.4	2.4	40K	75K	190K	PD	5.2
M4	NLD10	IO	2/4/6/8	0.4	2.4	40K	75K	190K	PD	5.2
M3	NLD9	Ю	2/4/6/8	0.4	2.4	40K	75K	190K	PD	5.2
M2	NLD8	IO	2/4/6/8	0.4	2.4	40K	75K	190K	PD	5.2
M1	NLD7	IO	2/4/6/8	0.4	2.4	40K	75K	190K	PD	5.2
N4	NLD6	Ю	2/4/6/8	0.4	2.4	40K	75K	190K	PD	5.2
N3	NLD5	Ю	2/4/6/8	0.4	2.4	40K	75K	190K	PD	5.2
N2	NLD4	Ю	2/4/6/8	0.4	2.4	40K	75K	190K	PD	5.2
N1	NLD3	Ю	2/4/6/8	0.4	2.4	40K	75K	190K	PD	5.2
P4	NLD2	Ю	2/4/6/8	0.4	2.4	40K	75K	190K	PD	5.2
P3	NLD1	Ю	2/4/6/8	0.4	2.4	40K	75K	190K	PD	5.2
P2	NLD0	Ю	2/4/6/8	0.4	2.4	40K	75K	190K	PD	5.2
P1	NRNB	IO	4	0.4	2.4	40K	75K	190K	PU	5.2
R4	NCLE	IO	4	0.4	2.4	40K	75K	190K	PD	5.2
R2	NALE	IO	4	0.4	2.4	40K	75K	190K	PD	5.2
R1	NWE#	IO	4	0.4	2.4	40K	75K	190K	PU	5.2
T1	NRE#	IO	4	0.4	2.4	40K	75K	190K	PU	5.2
U1	NCE#	Ю	4	0.4	2.4	40K	75K	190K	PU	5.2
			SIM Card Inter							
K14	SIMRST	О	2	0.4	2.4					
J17	SIMCLK	0	2	0.4	2.4					
J16	SIMVCC	0	2	0.4	2.4					
J15	SIMSEL	IO	2	0.4	2.4	40K	75K	190K	PD	5.2
J13	SIMDATA	IO	2	0.4	2.4	40K	/3K	190K	ги	5.2
J14	SIMDATA	10			2.4					3.2
TEO.	CDIO	10	Dedicated GPI		2.4	4077	G.517	10077	DII	150
T3	GPIO0	IO	2	0.4	2.4	40K	75K	190K	PU	5.2
U4	GPIO1	IO	2	0.4	2.4	40K	75K	190K	PU	5.2
T4	GPIO2	IO	2	0.4	2.4	40K	75K	190K	PU	5.2
U5	GPIO3	IO	2	0.4	2.4	40K	75K	190K	PU	5.2
G13	GPIO4	IO	4	0.4	2.4	40K	75K	190K	PU	5.2
F13	GPIO5	IO	4	0.4	2.4	40K	75K	190K	PD	5.2
D13	GPIO6	IO	4	0.4	2.4	40K	75K	190K	PD	5.2
D14	GPIO7	IO	4	0.4	2.4	40K	75K	190K	PD	5.2
B16	GPIO8	IO	4	0.4	2.4	40K	75K	190K	PU	5.2
A16	GPIO9	IO	4	0.4	2.4	40K	75K	190K	PU	5.2
			Miscellaneous							
U3	CXCDCE	I								5.2
	SYSRST#	1								1
K8	WATCHDOG#	O	4	0.4	2.4					
	+	-	2	0.4	2.4					
K8	WATCHDOG#	О	-			40K	75K	190K	PD	5.2
K8 U2	WATCHDOG# SRCLKENA	0	2	0.4	2.4	40K	75K	190K	PD	5.2
K8 U2 T2	WATCHDOG# SRCLKENA	0	2 2	0.4	2.4	40K		I	PD	
K8 U2 T2	WATCHDOG# SRCLKENA SRCLKENAI KCOL4	O IO	2 2	0.4	2.4		75K	190K 190K 190K		5.2 5.2 5.2
K8 U2 T2 G15 G14	WATCHDOG# SRCLKENA SRCLKENAI KCOL4 KCOL3	O O IO	2 2	0.4	2.4	40K 40K	75K 75K	190K 190K	PU	5.2 5.2
K8 U2 T2	WATCHDOG# SRCLKENA SRCLKENAI KCOL4	O O IO	2 2	0.4	2.4	40K	75K	190K	PU PU	5.2

R5 EINT1 I 40K 75K 190K F P5 EINT2 I 40K 75K 190K F	7 K 6 K 5 K 4 K 7 K E E E E 14 E 15 E	KROW4 KROW3 KROW2 KROW1 KROW0 EINT0 EINT1 EINT2	O O O O O O O I I I I	2 2 2 2 2	0.4 0.4 0.4 0.4 0.4	2.4 2.4 2.4 2.4					
E16	6 K 5 K 4 K 7 K E E E E 14 E 15 E	KROW3 KROW2 KROW1 KROW0 EINT0 EINT1 EINT2	O O O O O I I I I	2 2 2 2	0.4 0.4 0.4 0.4	2.4 2.4 2.4					
E15	5 K 4 K 7 K E E E E 14 E 15 E	KROW2 KROW1 KROW0 EINT0 EINT1 EINT2	O O O O I I I I	2 2 2	0.4 0.4 0.4	2.4					
E14	4 K 7 K E E E E E E E E E E E E E E E E E E E	KROW1 (KROW0 (Krow) (Krow0 (Krow) (Krow0 (Krow) (Krow0 (Krow) (Krow) (Krow0 (Krow) (Kr	O O I I I I	2	0.4	2.4					
D17	7 K E E E E 14 E 15 E 16 E	EINTO DEINT1 DEINT2	O I I	2	0.4						
External Interrupt Interface	E E E E E E E E E E E E E E E E E E E	EINTO I	I I			2.4					
T5	E E E E E E E E E E E E E E E E E E E	EINT1 I	I I	External Interr	upt Interface						
T5	E E E E E E E E E E E E E E E E E E E	EINT1 I	I I								
R5	E E E E E E E E E E E E E E E E E E E	EINT1 I	I				40K	75K	190K	PU	5.2
P5	E E E E E E E E E E E E E E E E E E E	EINT2								PU	5.2
U6	14 E 15 E 16 E		I							PU	5.2
M14 ED0 IO 2~16 0.4 2.4	14 E 15 E 16 E									PU	5.2
M14	15 E			External Memo	ry Interface						
M15 ED1 IO 2~16 0.4 2.4 M16 ED2 IO 2~16 0.4 2.4 M17 ED3 IO 2~16 0.4 2.4 N14 ED4 IO 2~16 0.4 2.4 N15 ED5 IO 2~16 0.4 2.4 N16 ED6 IO 2~16 0.4 2.4 N17 ED7 IO 2~16 0.4 2.4 N17 ED8 IO 2~16 0.4 2.4 N17 ED7 IO 2~16 0.4 2.4 P15 ED8 IO 2~16 0.4 2.4 P16 ED9 IO 2~16 0.4 2.4 P17 ED10 IO 2~16 0.4 2.4 R16 ED11 IO 2~16 0.4 2.4 R17 ED12 IO 2~16 0.4 2.4 T17 ED13 IO 2~16 0.4 2.4 T17 ED14 IO 2~16 0.4 2.4 R18 ED914 IO 2~16 0.4 2.4 R19 ED14 IO 2~16 0.4 2.4 R19 ED15 IO 2~16 0.4 2.4 R117 ED14 IO 2~16 0.4 2.4 R118 ECS0# O 2~16 0.4 2.4 R13 ECS0# O 2~16 0.4 2.4 T14 ECS2# O 2~16 0.4 2.4 U16 ELB# O 2~16 0.4 2.4 U16 ELB# O 2~16 0.4 2.4 U17 EUB# O 2~16 0.4 2.4 U16 ELB# O 2~16 0.4 2.4 U17 EUB# O 2~16 0.4 2.4 U16 ELB# O 2~16 0.4 2.4 U17 EUB# O 2~16 0.4 2.4	15 E	FD0			1	2.4					5.2
M16 ED2 IO 2~16 0.4 2.4 M17 ED3 IO 2~16 0.4 2.4 N14 ED4 IO 2~16 0.4 2.4 N15 ED5 IO 2~16 0.4 2.4 N16 ED6 IO 2~16 0.4 2.4 N17 ED7 IO 2~16 0.4 2.4 P15 ED8 IO 2~16 0.4 2.4 P16 ED9 IO 2~16 0.4 2.4 P17 ED10 IO 2~16 0.4 2.4 R16 ED11 IO 2~16 0.4 2.4 R17 ED12 IO 2~16 0.4 2.4 U17 ED13 IO 2~16 0.4 2.4 U17 ED14 IO 2~16 0.4 2.4 R14 ERD# O 2~16 0.4 2.4	16 E										5.2
M17 ED3 IO 2~16 0.4 2.4 □ N14 ED4 IO 2~16 0.4 2.4 □ □ N15 ED5 IO 2~16 0.4 2.4 □ □ N16 ED6 IO 2~16 0.4 2.4 □ □ N17 ED7 IO 2~16 0.4 2.4 □ □ P15 ED8 IO 2~16 0.4 2.4 □ □ P16 ED9 IO 2~16 0.4 2.4 □ □ P17 ED10 IO 2~16 0.4 2.4 □ □ R16 ED11 IO 2~16 0.4 2.4 □ □ R17 ED12 IO 2~16 0.4 2.4 □ □ T17 ED13 IO 2~16 0.4 2.4 □ □ T16 ED15 IO 2~16 0.4 2.4 □ □ R14 ERD											5.2
N14 ED4 IO 2~16 0.4 2.4 N15 ED5 IO 2~16 0.4 2.4 N16 ED6 IO 2~16 0.4 2.4 N17 ED7 IO 2~16 0.4 2.4 P15 ED8 IO 2~16 0.4 2.4 P16 ED9 IO 2~16 0.4 2.4 P17 ED10 IO 2~16 0.4 2.4 R16 ED11 IO 2~16 0.4 2.4 R17 ED12 IO 2~16 0.4 2.4 R17 ED13 IO 2~16 0.4 2.4 U17 ED14 IO 2~16 0.4 2.4 U17 ED15 IO 2~16 0.4 2.4 R14 ERD# O 2~16 0.4 2.4 R13 ECS0# O 2~16 0.4 2.4 R15 ECS1# O 2~16 0.4 2.4 R14											5.2
N15 ED5 IO 2~16 0.4 2.4 N16 ED6 IO 2~16 0.4 2.4 N17 ED7 IO 2~16 0.4 2.4 P15 ED8 IO 2~16 0.4 2.4 P16 ED9 IO 2~16 0.4 2.4 P17 ED10 IO 2~16 0.4 2.4 R16 ED11 IO 2~16 0.4 2.4 R17 ED12 IO 2~16 0.4 2.4 R17 ED13 IO 2~16 0.4 2.4 U17 ED14 IO 2~16 0.4 2.4 U17 ED14 IO 2~16 0.4 2.4 R14 ERD# O 2~16 0.4 2.4 R14 ERD# O 2~16 0.4 2.4 R13 ECS0# O 2~16 0.4 2.4 <tr< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>5.2</td></tr<>					-						5.2
N16 ED6 IO 2~16 0.4 2.4 N17 ED7 IO 2~16 0.4 2.4 P15 ED8 IO 2~16 0.4 2.4 P16 ED9 IO 2~16 0.4 2.4 P17 ED10 IO 2~16 0.4 2.4 R16 ED11 IO 2~16 0.4 2.4 R17 ED12 IO 2~16 0.4 2.4 T17 ED13 IO 2~16 0.4 2.4 U17 ED14 IO 2~16 0.4 2.4 T16 ED15 IO 2~16 0.4 2.4 R14 ERD# O 2~16 0.4 2.4 R13 ECS0# O 2~16 0.4 2.4 R15 ECS1# O 2~16 0.4 2.4 T15 ECS1# O 2~16 0.4 2.4 T14 ECS2# O 2~16 0.4 2.4 T14											5.2
N17 ED7 IO 2~16 0.4 2.4 P15 ED8 IO 2~16 0.4 2.4 P16 ED9 IO 2~16 0.4 2.4 P17 ED10 IO 2~16 0.4 2.4 R16 ED11 IO 2~16 0.4 2.4 R17 ED12 IO 2~16 0.4 2.4 T17 ED13 IO 2~16 0.4 2.4 U17 ED14 IO 2~16 0.4 2.4 T16 ED15 IO 2~16 0.4 2.4 R14 ERD# O 2~16 0.4 2.4 P13 EWR# O 2~16 0.4 2.4 R13 ECS0# O 2~16 0.4 2.4 T15 ECS1# O 2~16 0.4 2.4 T14 ECS2# O 2~16 0.4 2.4 <											5.2
P15 ED8 IO 2~16 0.4 2.4 P16 ED9 IO 2~16 0.4 2.4 P17 ED10 IO 2~16 0.4 2.4 R16 ED11 IO 2~16 0.4 2.4 R17 ED12 IO 2~16 0.4 2.4 T17 ED13 IO 2~16 0.4 2.4 U17 ED14 IO 2~16 0.4 2.4 T16 ED15 IO 2~16 0.4 2.4 R14 ERD# O 2~16 0.4 2.4 P13 EWR# O 2~16 0.4 2.4 R13 ECS0# O 2~16 0.4 2.4 T15 ECS1# O 2~16 0.4 2.4 T14 ECS2# O 2~16 0.4 2.4 U16 ELB# O 2~16 0.4 2.4 <											5.2
P16 ED9 IO 2~16 0.4 2.4 P17 ED10 IO 2~16 0.4 2.4 R16 ED11 IO 2~16 0.4 2.4 R17 ED12 IO 2~16 0.4 2.4 T17 ED13 IO 2~16 0.4 2.4 U17 ED14 IO 2~16 0.4 2.4 T16 ED15 IO 2~16 0.4 2.4 R14 ERD# O 2~16 0.4 2.4 P13 EWR# O 2~16 0.4 2.4 R13 ECS0# O 2~16 0.4 2.4 T15 ECS1# O 2~16 0.4 2.4 T14 ECS2# O 2~16 0.4 2.4 U16 ELB# O 2~16 0.4 2.4 P14 EUB# O 2~16 0.4 2.4 <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5.2</td>					-						5.2
P17 ED10 IO 2~16 0.4 2.4 R16 ED11 IO 2~16 0.4 2.4 R17 ED12 IO 2~16 0.4 2.4 T17 ED13 IO 2~16 0.4 2.4 U17 ED14 IO 2~16 0.4 2.4 T16 ED15 IO 2~16 0.4 2.4 R14 ERD# O 2~16 0.4 2.4 P13 EWR# O 2~16 0.4 2.4 R13 ECS0# O 2~16 0.4 2.4 T15 ECS1# O 2~16 0.4 2.4 T14 ECS2# O 2~16 0.4 2.4 U16 ELB# O 2~16 0.4 2.4 P14 EUB# O 2~16 0.4 2.4											5.2
R16 ED11 IO 2~16 0.4 2.4 R17 ED12 IO 2~16 0.4 2.4 T17 ED13 IO 2~16 0.4 2.4 U17 ED14 IO 2~16 0.4 2.4 T16 ED15 IO 2~16 0.4 2.4 R14 ERD# O 2~16 0.4 2.4 P13 EWR# O 2~16 0.4 2.4 R13 ECS0# O 2~16 0.4 2.4 T15 ECS1# O 2~16 0.4 2.4 T14 ECS2# O 2~16 0.4 2.4 U16 ELB# O 2~16 0.4 2.4 P14 EUB# O 2~16 0.4 2.4	_										5.2
R17 ED12 IO 2~16 0.4 2.4 T17 ED13 IO 2~16 0.4 2.4 U17 ED14 IO 2~16 0.4 2.4 T16 ED15 IO 2~16 0.4 2.4 R14 ERD# O 2~16 0.4 2.4 P13 EWR# O 2~16 0.4 2.4 R13 ECS0# O 2~16 0.4 2.4 T15 ECS1# O 2~16 0.4 2.4 T14 ECS2# O 2~16 0.4 2.4 U16 ELB# O 2~16 0.4 2.4 P14 EUB# O 2~16 0.4 2.4											5.2
T17 ED13 IO 2~16 0.4 2.4 U17 ED14 IO 2~16 0.4 2.4 T16 ED15 IO 2~16 0.4 2.4 R14 ERD# O 2~16 0.4 2.4 P13 EWR# O 2~16 0.4 2.4 R13 ECS0# O 2~16 0.4 2.4 T15 ECS1# O 2~16 0.4 2.4 T14 ECS2# O 2~16 0.4 2.4 U16 ELB# O 2~16 0.4 2.4 P14 EUB# O 2~16 0.4 2.4											5.2
U17 ED14 IO 2~16 0.4 2.4 T16 ED15 IO 2~16 0.4 2.4 R14 ERD# O 2~16 0.4 2.4 P13 EWR# O 2~16 0.4 2.4 R13 ECS0# O 2~16 0.4 2.4 T15 ECS1# O 2~16 0.4 2.4 T14 ECS2# O 2~16 0.4 2.4 U16 ELB# O 2~16 0.4 2.4 P14 EUB# O 2~16 0.4 2.4											5.2
T16 ED15 IO 2~16 0.4 2.4 R14 ERD# O 2~16 0.4 2.4 P13 EWR# O 2~16 0.4 2.4 R13 ECS0# O 2~16 0.4 2.4 T15 ECS1# O 2~16 0.4 2.4 T14 ECS2# O 2~16 0.4 2.4 U16 ELB# O 2~16 0.4 2.4 P14 EUB# O 2~16 0.4 2.4						-					5.2
R14 ERD# O 2~16 0.4 2.4 P13 EWR# O 2~16 0.4 2.4 R13 ECS0# O 2~16 0.4 2.4 T15 ECS1# O 2~16 0.4 2.4 T14 ECS2# O 2~16 0.4 2.4 U16 ELB# O 2~16 0.4 2.4 P14 EUB# O 2~16 0.4 2.4											5.2
P13 EWR# O 2~16 0.4 2.4 R13 ECS0# O 2~16 0.4 2.4 T15 ECS1# O 2~16 0.4 2.4 T14 ECS2# O 2~16 0.4 2.4 U16 ELB# O 2~16 0.4 2.4 P14 EUB# O 2~16 0.4 2.4											10.2
R13 ECS0# O 2~16 0.4 2.4 T15 ECS1# O 2~16 0.4 2.4 T14 ECS2# O 2~16 0.4 2.4 U16 ELB# O 2~16 0.4 2.4 P14 EUB# O 2~16 0.4 2.4											
T15 ECS1# O 2~16 0.4 2.4 T14 ECS2# O 2~16 0.4 2.4 U16 ELB# O 2~16 0.4 2.4 P14 EUB# O 2~16 0.4 2.4											
T14 ECS2# O 2~16 0.4 2.4 U16 ELB# O 2~16 0.4 2.4 P14 EUB# O 2~16 0.4 2.4					-						
U16 ELB# O 2~16 0.4 2.4 P14 EUB# O 2~16 0.4 2.4											
P14 EUB# O 2~16 0.4 2.4	_										
						-					
R12 EADV # O 2~16 0.4 2.4											
							40K	75K	190K	PU	5.2
P12 ECLK O 2~16 0.4 2.4				2~16	0.4	2.4					
U14 ERAS# O 2~16 0.4 2.4											
U15 ECAS# O 2~16 0.4 2.4					-	-					
U13 ECKE O 2~16 0.4 2.4						-					
T13 EDCLK O 2~16 0.4 2.4											
U12 EA1 O 2~16 0.4 2.4											
N11 EA2 O 2~16 0.4 2.4											
P11 EA3 O 2~16 0.4 2.4											
R11 EA4 O 2~16 0.4 2.4										1	
T11 EA5 O 2~16 0.4 2.4	t E .				0.4	-					
U11 EA6 O 2~16 0.4 2.4						-					

375/377

MEDIATER	•									
P10	EA7	O	2~16	0.4	2.4					
R10	EA8	O	2~16	0.4	2.4					
T10	EA9	О	2~16	0.4	2.4					
U10	EA10	О	2~16	0.4	2.4					
P9	EA11	О	2~16	0.4	2.4					
R9	EA12	О	2~16	0.4	2.4					
Т9	EA13	О	2~16	0.4	2.4					
U9	EA14	О	2~16	0.4	2.4					
P8	EA15	О	2~16	0.4	2.4					
R8	EA16	О	2~16	0.4	2.4					
Т8	EA17	О	2~16	0.4	2.4					
U8	EA18	О	2~16	0.4	2.4					
P7	EA19	О	2~16	0.4	2.4					
R7	EA20	О	2~16	0.4	2.4					
Т7	EA21	О	2~16	0.4	2.4					
U7	EA22	О	2~16	0.4	2.4					
P6	EA23	О	2~16	0.4	2.4					
R6	EA24	О	2~16	0.4	2.4					
Т6	EA25	О	2~16	0.4	2.4					
			Memory Card	Interface	•					-
M13	мссм0	IO	4~16	0.4	2.4	40K	75K	190K	PU/PD	5.2
L14	MCDA0	IO	4~16	0.4	2.4	40K	75K	190K	PU/PD	5.2
L15	MCDA1	IO	4~16	0.4	2.4	40K	75K	190K	PU/PD	5.2
L16	MCDA2	IO	4~16	0.4	2.4	40K	75K	190K	PU/PD	5.2
L17	MCDA3	IO	4~16	0.4	2.4	40K	75K	190K	PU/PD	5.2
K17	MCCK	О	4~16	0.4	2.4					
K16	MCWP	I				40K	75K	190K	PU	5.2
K15	MCINS	I				40K	75K	190K	PU	5.2
	<u>.</u>		UART/IrDA In	iterface			-	<u> </u>	<u>.</u>	-
H17	URXD1	I				40K	75K	190K	PU	5.2
H16	UTXD1	0	2	0.4	2.4	-	1	1 11-1	-	† · ·
H15	URXD2	IO	2	0.4	2.4	40K	75K	190K	PU	5.2
H14	UTXD2	IO	2	0.4	2.4	40K	75K	190K	PU	5.2
G17	URXD3	IO	2	0.4	2.4	40K	75K	190K	PU	5.2
G16	UTXD3	IO	2	0.4	2.4	40K	75K	190K	PU	5.2
			Digital Audio I							
D16	DAICLK	IO	4	0.4	2.4	40K	75K	190K	PU	5.2
D15	DAIPCMOUT	IO	4	0.4	2.4	40K	75K	190K	PD	5.2
D15	DAIPCMIN	IO	4	0.4	2.4	40K	75K	190K	PU	5.2
C16	DAISYNC	IO	4	0.4	2.4	40K	75K	190K	PU	5.2
		1-5	Image Sensor I							
C15	CMRST	IO	2	0.4	2.4	40K	75K	190K	PD	5.2
B15	CMPDN	IO	2	0.4	2.4	40K	75K	190K	PD	5.2
A15	CMVREF	I		J U.T	۷.٦	40K	75K	190K	PU/PD	5.2
C14	CMHREF	I				40K	75K	190K	PU/PD	5.2
A17	CMPCLK	I				40K	75K	190K	PD	5.2
B17	CMMCLK	0	2~16	0.4	2.4	40K	75K	190K	PD	3.2
B14	CMDAT7	Ю	2~10	0.4	2.4	40K	75K	190K	PD	5.2
דוח	CMDAI/	10	4	0.7	۷.٦	TUIX	/ JIX	1701	110	13.2

A14	CMDAT6	IO	2	0.4	2.4	40K	75K	190K	PD	5.2
C13	CMDAT5	IO	2	0.4	2.4	40K	75K	190K	PD	5.2
B13	CMDAT4	IO	2	0.4	2.4	40K	75K	190K	PD	5.2
A13	CMDAT3	IO	2	0.4	2.4	40K	75K	190K	PD	5.2
D12	CMDAT2	IO	2	0.4	2.4	40K	75K	190K	PD	5.2
C12	CMDAT1	IO	2	0.4	2.4	40K	75K	190K	PD	5.2
B12	CMDAT0	IO	2	0.4	2.4	40K	75K	190K	PD	5.2